

Descifrando los parámetros atmosféricos estelares de estrellas M con CARMENES

Dr. Emilio Gómez Marfil X Jornadas de Introducción a la Investigación 30 mayo — 3 junio 2022

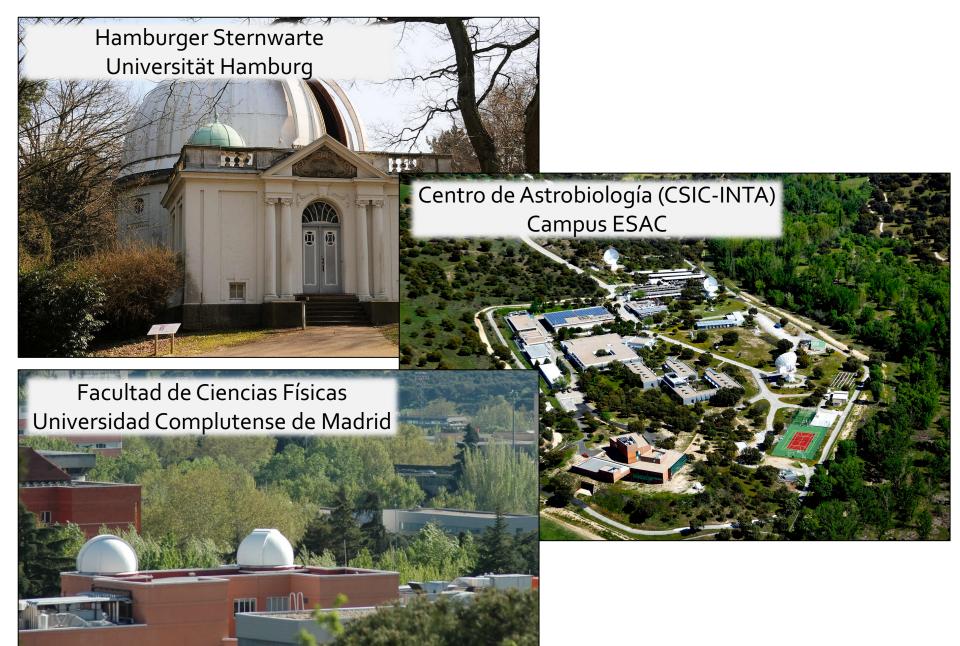
Presentación

Formación predoctoral (2017 - 2021)

Universidad Complutense de Madrid | Departamento de Física de la Tierra y Astrofísica Contrato predoctoral UCM-Santander + Contrato predoctoral FPU Estancia breve de tres meses en el Observatorio de Hamburgo (Alemania)

Programa de Doctorado en Astrofísica (RD99/2011)

Título de la tesis


Espectroscopía de estrellas FGKM para la explotación científica de la búsqueda de exoplanetas con CARMENES

Directores

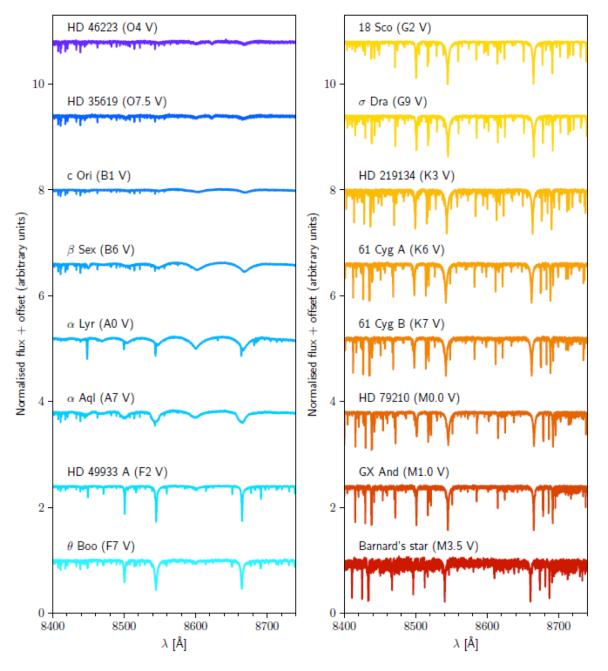
Prof. Dr. David Montes Gutiérrez (UCM)
Dr. Hugo M. Tabernero Guzmán (CAB, CSIC-INTA)

Formación postdoctoral (2021 - presente)

Centro de Astrobiología (CSIC-INTA) | Departamento de Astrofísica Contrato de investigación adscrito al Proyecto "María de Maeztu" (ref. MDM-2017-0737)

Introducción

La caracterización de las enanas de tipo M es crucial:

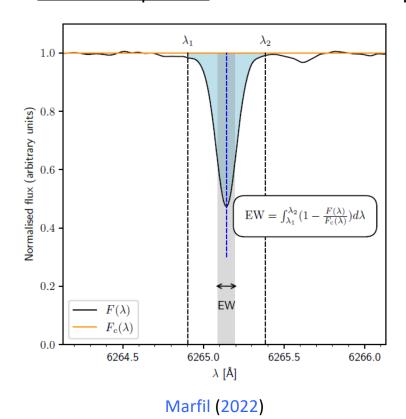

- Arqueología galáctica (ubicuidad en el entorno solar, longevidad).
- **Búsqueda de exoplanetas** (formación, evolución y estructura de los sistemas).

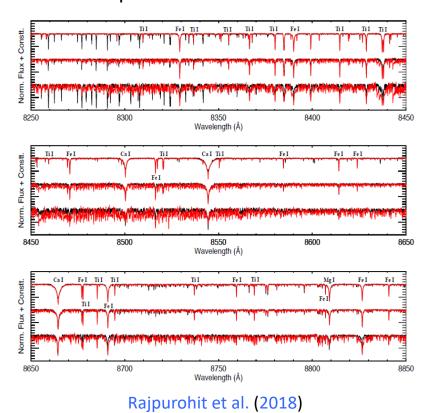
El análisis espectroscópico de enanas de tipo M es complejo:

- Pico de emisión en el **infrarrojo cercano** (absorción telúrica).
- Intensas bandas moleculares (TiO, VO, FeH, OH, CO).
- Presencia de **campos magnéticos** y fenómenos de **actividad estelar** (manchas, playas, fulguraciones).

Tipo espectral	T _{eff} [K]	<i>M</i> [<i>M</i> _⊙]	$R[R_{\odot}]$	$L[L_{\odot}]$	Frecuencia
0	≥ 30000	≥ 17.4	≥7.2	≥ 38000	~ 0.00003%
В	9500 – 30000	2.9 – 17.4	2.7-7.2	43 - 38000	~ 0.1%
A	7200 – 9500	1.6 – 2.9	1.2 – 2.7	5.8 - 43	~ 0.6%
F	6000 – 7200	1.05 – 1.6	1.05 - 1.5	1.3 – 5.8	~ 3%
G	5100 – 6000	0.79 - 1.05	0.85 - 1.05	0.4-1.3	~ 7.5%
K	3800 – 5100	0.60 – 0.79	0.62 – 0.85	0.05 – 0.4	~ 12%
M	2300 – 3800	0.075 – 0.60	0.08 – 0.62	0.00015 - 0.072	~ 76%

Fuente: Ledrew (2001), Reid & Hawley (2005), Hubeny & Mihalas (2014)

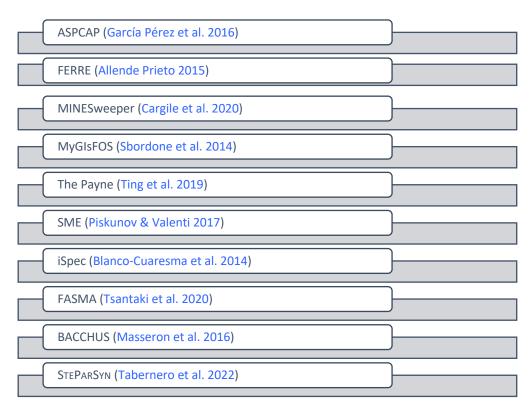


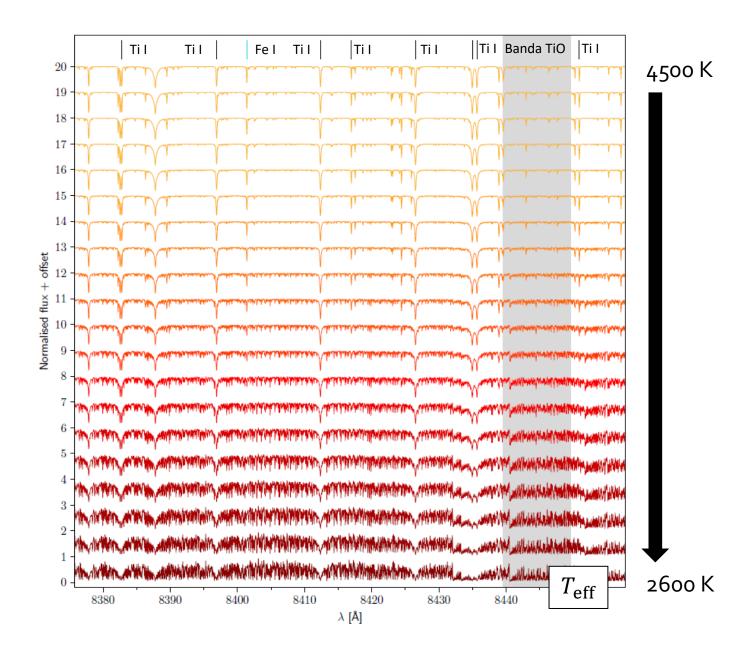

Introducción

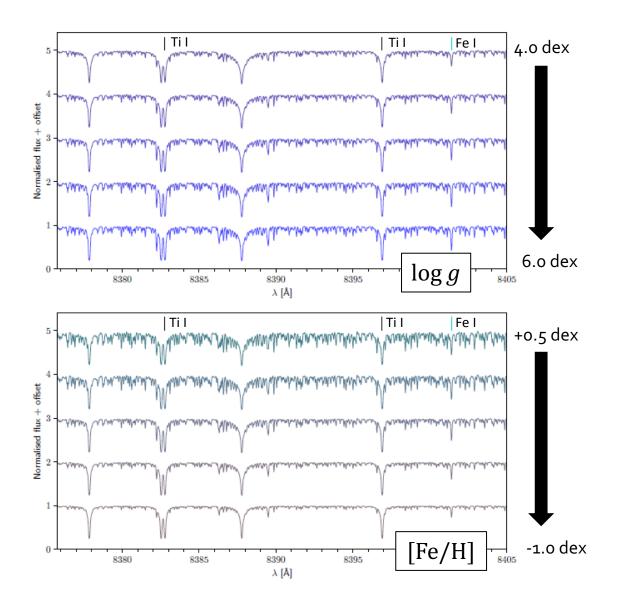
Propiedades de interés Parámetros atmosféricos estelares Métodos espectroscópicos

L, R, M, $T_{\rm eff}$, $\log g$, $v \sin i$, [Fe/H], [X/H] ... $T_{\rm eff}$, $\log g$, [Fe/H]

- <u>Método de anchuras equivalentes</u> medida de EW de líneas de Fe I y Fe II. ¡No válido para caracterizar enanas de tipo M! (pseudocontinuo, apenas Fe II)
- <u>Síntesis espectral</u> basado en la comparación con espectros sintéticos.


Síntesis espectral


El objetivo es encontrar el espectro sintético que mejor ajusta el espectro observado, mediante un algoritmo de minimización (p. ej. χ^2).


Mallas de espectros sintéticos

- Uso de mallas de la literatura (p. ej. PHOENIX-ACES, Husser et al. 2013).
- Se pueden calcular "desde cero" (modelos de atmósfera + información atómica y molecular + código de transferencia radiativa).

Implementaciones de síntesis espectral

Espectrógrafo	Resolución	Δλ [Å]				
Espectrógrafos comparables en el óptico e infrarrojo cercano						
GIARPS (Claudi et al. 2018)	115 000, 50 000	3830 – 24500				
NIRPS+HARPS (Bouchy et al. 2017)	115 000, 100 000	3780 – 6910, 9500 – 18000				
HIRES@E-ELT (Marconi et al. 2020)	100 000	4000 – 18000				
Espectrógrafos comparables en el infrarrojo cercano						
Veloce (Gilbert et al. 2018)	80 000	5800 – 9300				
CRIRES+ (Dorn et al. 2016)	100 000	9500 – 52000				
MAROON-X (Seifahrt et al. 2020)	80 000	5000 – 9200				
NIRPS (Wildi et al. 2017)	100 000	9500 – 18000				
SPIRou (Artigau et al. 2014)	73 500	9800 – 23500				
HPF (Mahadevan et al. 2014)	55 000	8100 – 12800				
IRD (Kotani et al. 2018)	70 000	9700 – 17500				
GIANO-B (Origlia et al. 2014)	50 000	9000 – 24500				
iSHELL (Rayner et al. 2016)	75 000	11000 – 53000				
Espectrógrafos comparables en el óptico						
ESPRESSO (Pepe et al. 2021)	190 000	3800 – 7880				
HORuS (Allende Prieto 2021)	25 000	3800 – 6900				
HARPS-N (Cosentino et al. 2012)	115 000	3830 – 6930				
PFS (Crane et al. 2010)	190 000	3910 – 7340				
HARPS (Mayor et al. 2003)	115 000	3780 – 6910				
HRS (Tull 1998)	120 000	3900 – 11000				
UVES (Dekker et al. 2000)	110 000	3200 – 10500				
HIRES@Keck (Vogt et al. 1994)	85 000	3000 – 10000				

Observaciones

Enanas de tipo M – cobertura en el infrarrojo cercano

CARMENES (... y muchos más)

The CARMENES search for exoplanets around M dwarfs

Stellar atmospheric parameters of target stars with STEPARSYN*

E. Marfil^{1,2}, H. M. Tabernero^{3,4}, D. Montes¹, J. A. Caballero², F. J. Lázaro¹, J. I. González Hernández^{5,6}, E. Nagel^{7,8}, V. M. Passegger^{7,9}, A. Schweitzer⁷, I. Ribas^{10,11}, A. Reiners¹², A. Quirrenbach¹³, P. J. Amado¹⁴, C. Cifuentes², M. Cortés-Contreras², S. Dreizler¹², C. Duque-Arribas¹, D. Galadí-Enríquez¹⁵, Th. Henning¹⁶, S. V. Jeffers^{17,12}, A. Kaminski¹³, M. Kürster¹⁶, M. Lafarga^{10,11,18}, Á. López-Gallifa¹, J. C. Morales^{10,11}, Y. Shan¹², and M. Zechmeister¹²

Received 6 August 2021 / Accepted 7 October 2021

Departamento de Física de la Tierra y Astrofísica & IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain e-mail: emigom@1@ucm.es

² Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, 28691 Villanueva de la Cañada, Madrid, Spain

³ Centro de Astrobiología (CSIC-INTA), Carretera a Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain

⁴ Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal

⁵ Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain

⁶ Universidad de La Laguna, Departamento de Astrofísica, 38206 La Laguna, Tenerife, Spain

⁷ Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany

⁸ Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany

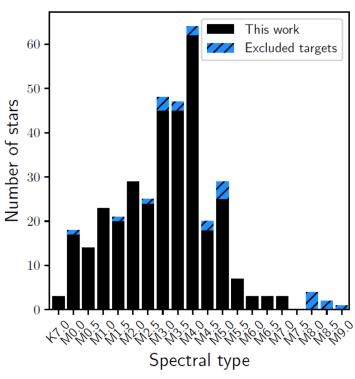
⁹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK-73019 Oklahoma, USA

¹⁰ Institut de Ciències de l'Espai (CSIC), Campus UAB, c/ de Can Magrans s/n, 08193 Cerdanyola del Vallès, Spain

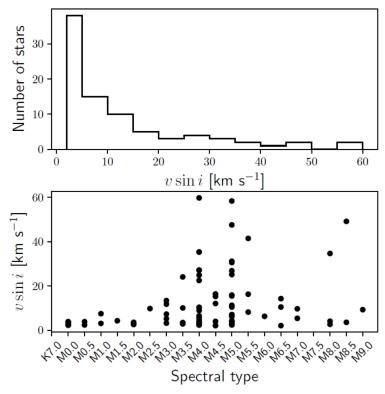
¹¹ Institut d'Estudis Espacials de Catalunya (IEEC), c/ Gran Capità 2-4, 08034 Barcelona, Spain

¹² Institut für Astrophysik, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

¹³ Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany


¹⁴ Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain

¹⁵ Observatorio de Calar Alto, Sierra de los Filabres, 04550 Gérgal, Almería, Spain


¹⁶ Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

¹⁷ Max-Planck-Institut für Sonnensystemforschung, Justus-von- Liebig-Weg 3, 37077 Göttingen, Germany

¹⁸ Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

Histograma de la muestra (Marfil et al. 2021)

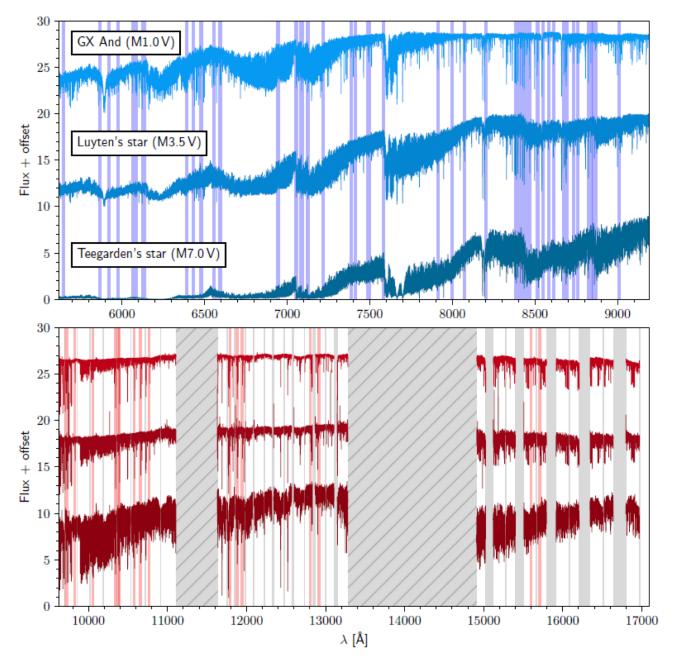
Velocidades de rotación ($v \sin i > 2 \text{ km s}^{-1}$) (Marfil et al. 2021)

Muestra

365 estrellas GTO de CARMENES GTO hasta mediados de 2020 (Quirrenbach et al. 2020)

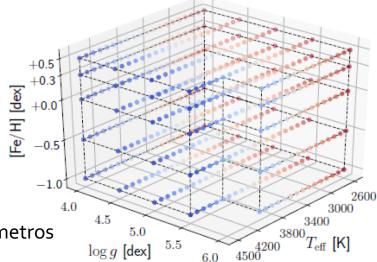
Estrellas excluidas

Una binaria eclipsante (CM Dra, Morales et al. 2009)


Diez sistemas SB2 and dos sistemas ST3 (Baroch et al. 2018, 2021)

Siete enanas de tipo M tardío (limitaciones en la metodología)

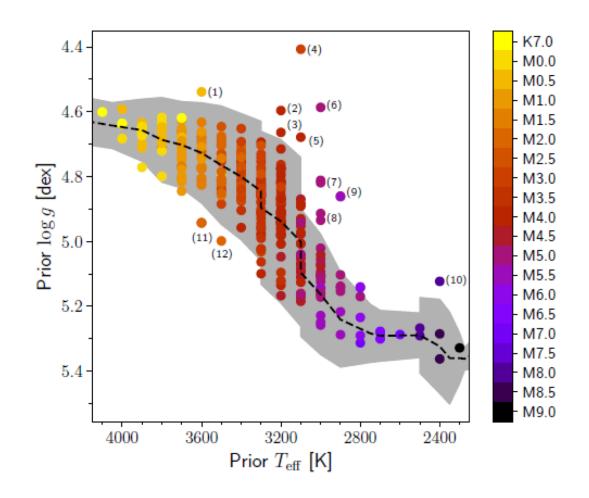
Tres enanas M con espectros "defectuosos"

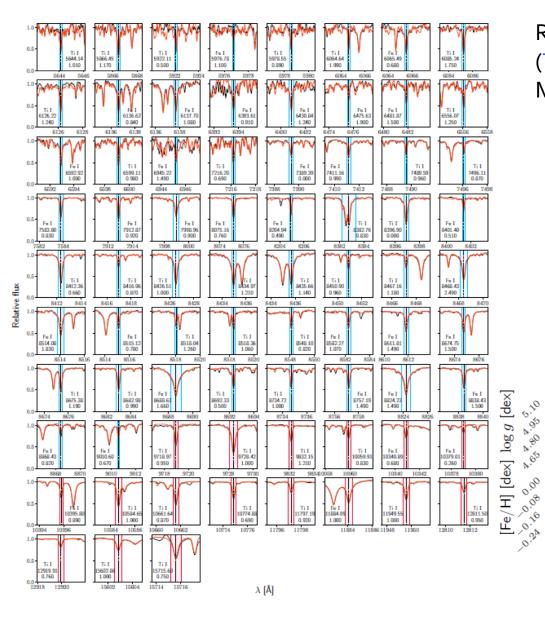

Muestra final

343 estrellas GTO de CARMENES (incluyendo tres estrellas de tipo K7.0 V)

Malla de espectros sintéticos

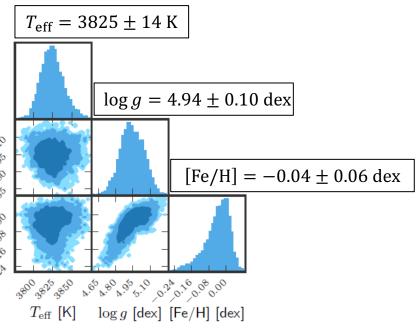
Modelos de atmósfera (BT-Settl) + Código de transferencia (Turbospectrum) + Información atómica y molecular (VALD3 + ...)

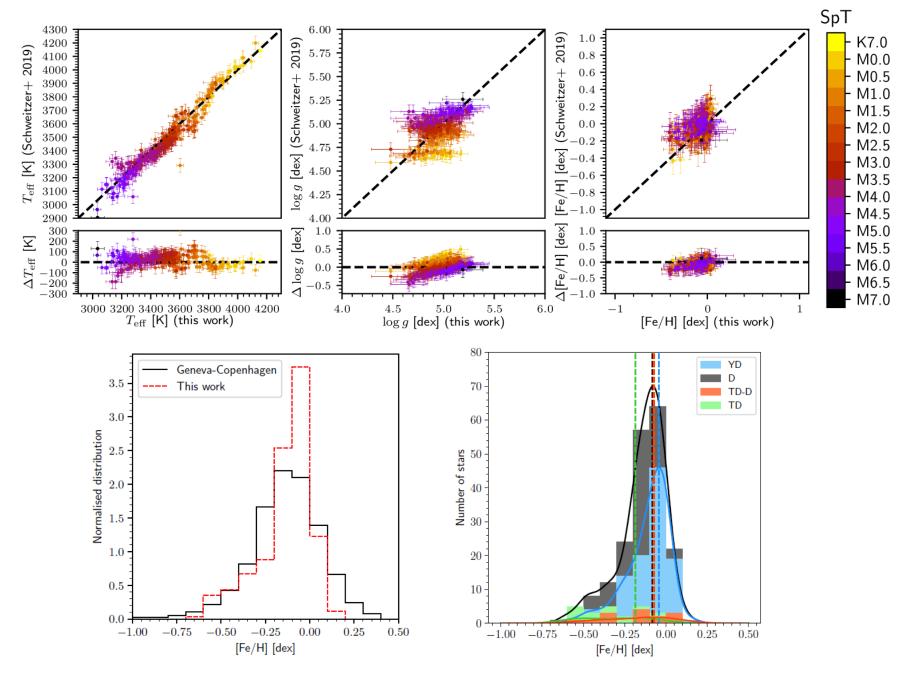

Cobertura de la malla en el espacio de parámetros


Molécula	Fuente	Número de transiciones
H ₂ O	Barber et al. (2006)	~ 2 900 000
FeH	Dulick et al. (2003)	~ 18 000
MgH	Kurucz (2014)	~ 27 000
СО	Goorvitch (1994)	~ 34 000
SiH	Kurucz (2014)	~ 6 000
ОН	Kurucz (2014)	~ 27 000
VO	McKemmish et al. (2016)	~ 3 500 000
CaH	B. Plez priv. comm. (see Heiter et al. 2021)	~ 17 000
ZrO	B. Plez priv. comm. (see Heiter et al. 2021)	~ 12 500 000
TiO	B. Plez priv. comm. (see Heiter et al. 2021)	~ 6 500 000

Información atómica (VALD3) y molecular (otras fuentes)

Distribuciones de probabilidad a priori

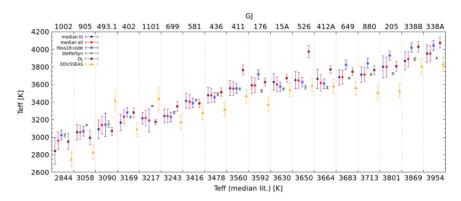

Basadas en la información fotométrica multibanda disponible para la muestra (Cifuentes et al. 2020)

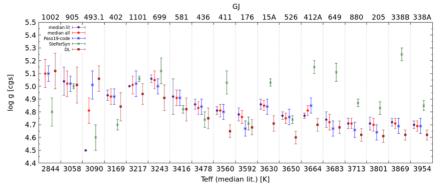


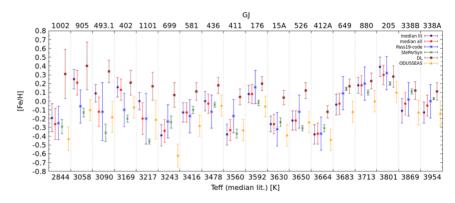
Resultados del código STEPARSYN (Tabernero et al. 2022) para la estrella M1.0 V HD 233153 (Marfil et al. 2021)

> 75 líneas Ti I and Fe I + 5 bandas γ y ε de TiO

Comparación con otras metodologías


En Passegger et al. (2022)


Diferentes metodologías:


- PHOENIX-ACES + χ^2
- STEPARSYN
- Pseudo-EW (ODUSSEAS)
- Aprendizaje profundo (deep learning)

Diferentes aproximaciones:

- Sin restricciones
- Valores medios de la literature
- Normalización de los espectros

Pruebas de referencia

Temperatura efectiva, $T_{
m eff}$

De la ley de Stefan-Boltzmann:

$$L = 4\pi R^2 \sigma T_{\rm eff}^4$$

Pero:

$$L = 4\pi d^2 F_{\text{bol}}$$

$$R \cong \frac{\theta_{\rm LD}}{2} d$$

$$T_{\rm eff} = \sqrt[4]{\frac{F_{\rm bol}}{\sigma}} \sqrt{\frac{2}{\theta_{\rm LD}}}$$

R: radio de la estrella

 σ : constante de Stefan-Boltzmann

d: distancia a la estrella

 F_{bol} : flujo bolométrico

 $heta_{ ext{LD}}$: diámetro angular

Gravedad superficial, $\log g$ De la relación fundamental:

$$g = G \frac{M}{R^2}$$

p: paralaje

G: constante de gravitación

M: masa de la estrella

Paralajes (p), de misiones como *Hipparcos, Gaia*.

R, de la distancia y el paralaje: $R = \theta_{\rm LD}/2p$

 $\it M$, de trazas evolutivas, asterosismología o sistemas binarios.

Importante: F_{bol} y θ_{LD} solo se pueden medir para unas pocas estrellas cercanas al Sol

Pruebas de referencia

Los sistemas estelares múltiples se forman a partir de la misma nube molecular

Se espera que las componentes presenten composiciones químicas similares (Montes et al. 2018)

MINISTERIO

