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OVERVIEW AND MOTIVATION

Ultracold atoms trapped in optical lattices offer a powerful toolbox for studying many-body systems through quantum simulation. Possibility to study
condensed matter systems and new phases of matter, e.g. Bose-Einstein condensates (BEC).
The Bose–Hubbard (BH) model gives a description of the physics of interacting bosons on a lattice. Explicit time dependence by driving in time any term of
the Hamiltonian of the system in order to explore new and interesting effects.
Floquet engineering consists of rapidly oscillating a parameter of a Hamiltonian periodically in time, which, following the elimination of the
high-frequency degrees of freedom, produces a time-independent effective Hamiltonian.
Cat states: coherent quantum superposition between two o more macroscopic different parts. Particular and extreme form of entanglement. The
preparation of such a states is difficult due to decoherence. Applications: test for macroscopic realism, atom interferometry, precision measurements,
quantum information task and quantum metrology.
Goal: To extent the study of the properties of our exotic cat state and to test its robustness.
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Momentum denisity vs. J/U vs. k. Eight particles in eight sites of a ring.

Hopping to nearest neighbors.
Transition phase.
For J = 0, interaction domains. Mott insulator.
As J ↑, kinetic domains. Superfluid, BEC forms at
k = 0.

KINETICALLY DRIVEN
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(Left) Momentum density versus κ vs. k. (Right) 2-Particle momentum density (2-PMD) for several κ. Eight particles in eight sites of a ring.

Time-periodic modulation of the hopping amplitude, J → f (t) = J cos(ωt).
Kinetic and interaction terms merge in a unique term in the effective Hamiltonian. Correlated
hoppings appear!
Transition phase remains. For κ = 0, Mott insulator. As κ ↑, superfluid.
Fragmented condensate at k = ±π/2.
The absence of cross peaks in the 2-PMD reveals that the ground state is a Schrödinger cat state.

MINOR CHANGES

Signal shape: The cat structure remains for other non-sinusoidal drivings: square, triangle and sawtooth (zero time average periodic functions).
Switching protocol: The effective Hamiltonian is totally independent on the initial phase of the driving.
External flux: Introducing a Peierls phase conmensurate with the reciprocal lattice shifts the peaks, but the cat remains.

CURRENT WORK: SUPERFLUIDITY

Exotic superfluidy due to the correlations of the kinetically-driven BH.
Proven by general theorems: Tomonaga-Luttinger liquid theory.
Look for signs of superfluidity by adding an impurity in the ring.

Off-diagonal impurity in the ring mediated by ε. As ε increases, the link between two adjacent sites is broken.

ADIABATIC PREPARATION

(Top) Starting from the Mott state, the hopping amplitude J cos(ωt + ϕ) is ramped-up slowly
and the state is evolved to the Cat state. (Bottom) Momentum density at π/2 versus time to
measure the protocol fiability. ϕ = 0(black), π/2 (blue) and π/4 (red).
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