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1. Introduction

Glass formers (spin glasses, colloids, structural glasses, ...) dis-
play slow relaxations at low temperatures. The sluggish dynam-
ics appears when large susceptibilities and correlations lengths
are found. This behavior is usual in 2nd order phase transitions.
Mean field theory predicts these features, but a crossover region
could explain them too. So, it is unclear if a phase transition
is present. Part of the difficulties arise from the complexity un-
derlying field theory. Under some simplifying assumptions, Bray
& Roberts proposed a replica symmetric field-theory [2]. Un-
fortunately, finding a stable fixed-point for the Renormalization
Group flow has been problematic within the Bray & Roberts
framework. In fact, no fixed-point has been identified for space
dimensions D<6. Indeed, Höller & Read have suggested that
the absence of a fixed-point is due to a 1st order transition [3].
Here, we study for the first dime several generalized suscep-
tibilities suggested by the full field-theory [4]. We obtain the
susceptibilities from D=4 spin-glass samples well equilibrated
at low temperatures in the presence of a magnetic field (kindly
provided by the Janus collaboration [5]). The behavior of these
susceptibilities and renormalized coupling constants confirm the
validity, as an effective field-theory at least, of the Bray &
Roberts framework [1].

2. Theory and observables

We study the Ising spin glass model in a magnetic field h with
N spins interacting via

H =− ∑
〈x ,y〉

JxySxSy + h∑
x

Sx , (1)

with the first sum is over nearest-neighbours pairs and Jxy =±1
with 50% probability. We indicate thermal average as 〈· · · 〉, and
the coupling average by an overline. The coupling average is
performed after the thermal one, 〈· · · 〉.
Using the replica formalism one obtain 3 linear susceptibilities,
χj , and 8 coupling constant, Wi . However, an expansion around
mean field [4] finds that only the replicon susceptibility (χR) is
divergent, while only two coupling constants, ω1 and ω2, are
relevant near the transition. These relevant magnitudes are
linear combination of the original ones.
In principle, we need at least 6 different real replicas to estimate
the original couplings constant Wi . Nevertheless, the theory
give us tools to estimate this couplings using only three replicas,
ω

(3R)
1 and ω

(3R)
2 , or four replicas, ω

(4R)
1 and ω

(4R)
2 . Near the

transition, these estimators approximate the true ω1 and ω2,
and coincide with them at the critical temperature Tc.
All these magnitudes could be obtained from the replica overlap
fields

Qab = 1
V ∑

x
Sa

x Sb
x ,

and different products of them.
Finally, the parameter λ ≡ ω2/ω1 determine the nature of the
transition. In particular, λ > 1 implies a 1st order transition,
and 0< λ < 1 a 2nd order transition.
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Graphical abstract of the process to estimate λ ∗. We use the Monte Carlo
configurations to calculate the thermal average, and from different samples
we estimate the coupling average.

3. Results

Bethe lattice

Bethe lattice with 4 neighbors.

The Bethe lattice spin glass offers a solvable setting to study the three- and four- replica estimators
(in particular, the critical temperature Tc and λ (T +

c ) are exactly known [6]). In Fig. 1 we plot the
exact λ and both estimators. The estimators extrapolate to the correct value at the critical point.
Notice the finite-size corrections, showing that λ ∗ 6= λ (T +

c ).
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Figure 1: The three-, four- and six-replicas es-
timators of λ (T ), computed at magnetic field
h = 0.7 on a Bethe lattice. Tc is marked with
a vertical line. The black dot is the analytical
value of λ (T +

c ) ' 0.47 [6]. The continuous
lines are the extrapolations of the data con-
sidering scaling corrections.
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Figure 2: The value of the replicon suscep-
tibility and of the longitudinal susceptibility
for the largest systems simulated (L = 16) as
function of the temperature in units of the
estimated critical temperature for each mag-
netic field.
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Figure 3: Left panel: ω1 (4-replicas estima-
tor) versus rescaled temperature in the 4D
Ising spin glass with h = 0.15. Right panel:
Λ1 as a function of the rescaled temperature.
T c is obtained from [5].

Edward-Anderson 4D with field
A crucial check of the validity of the Bray & Roberts setting is mutual consistency of the three- and four-replica
estimators. As a first step, we check that the susceptibilities behave as the theory predict. Indeed, see Fig. 2, the
replicon susceptibility become extremely large, in contrast with the other susceptibilities. We have studied as well, the
most diverging coupling constant ω1 (Fig. 3 left panel). In fact, the quantity Λ1≡ ω1/(χ

3/2
R
√

V ) (Fig. 3 right panel),
should merge or cross for different system size L at the critical temperature.
Finally, in Fig. 4 we plot the ratio λ for the three- and four-replica estimators for different magnetic fields. For each
magnetic field, both estimators for λ suggest an universal value λ ∗ ∼ 0.55 at Tc. Furthermore, the two estimators
approach their large-L limit from opposite sides. This helps in bracketing λ ∗, verifying that λ (L,T ) < 1. In addition,
the small dependence on temperature for T <Tc(h = 0.075) suggests that λ ∗ and λ (T +

c ) are very close, so we conclude
λ (T +

c ) < 1.
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Figure 4: Three- and four-replicas estimators for λ as a function of the temperature in the four dimensional Ising spin glass (the value of the
magnetic field h is indicated above each panel). Vertical lines report the three critical temperatures taken from [5]. The band around λ ∗' 0.55
is our best L→ ∞ extrapolation, assuming three- and four-replicas estimators converge to a common value for all the three simulated values
of the magnetic field (the width of the band represents the uncertainty in our extrapolation for h = 0.075).

4. Conclusions

We have studied the generalized susceptibilities and renor-
malized couplings constants for the Ising spin glass in an
external magnetic field, for both the 4D lattice and the
Bethe lattice. The structure of the divergence is consis-

tent with the predictions of the Replica Symmetric field
theory. Up to our knowledge, this is the first validation of
the assumptions underlying Bray & Roberts analysis.
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