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Félix	García	Pereira1,2,	J.	F.	González	Rouco1,2,	N.	Steinert1,2,	and	C.	Melo	Aguilar1,2	
Subsurface	thermal	structure:	a	climate	science	perspec4ve	

1.	Heat	transfer	in	the	subsurface	
Land-atmosphere interaction occurs at a wide range of time 
scales in the form of mass, momentum, and energy exchange 
(Melo-Aguilar et al., 2018). Further, subsurface holds a water 
and mostly energy storehouse for the climate system, 
accounting for around a 6 % of the terrestrial energy storage 
(Cuesta-Valero et al., 2021). Therefore, determining the 
subsurface thermal structure is key to understanding its 
influence on the global energy balance and hydrological cycle. 
This work explores the nature of the subsurface thermal 
regime both in models and in observations. 
 
The Max Planck Institute Earth System Model (MPI-ESM) 
is considered and the sensitivity of its subsurface thermal 
regime analyzed to changes of the model depth, this being a 
limitation in the current generation of climate models. It is 
found that such changes have important implications for the 
evolution of subsurface temperatures and energy storage in 
climate change simulations. Additionally, monitoring of 
subsurface temperatures at some sites allows for estimating 
thermal diffusivity and seeking causes for its variability in 
time and space. Results indicate that changes in soil 
moisture are responsible for the bulk of spatial and temporal 
variability in apparent thermal diffusivity. The approach 
developed herein shows a large potential compared to 
standard approximations focused on the annual cycle. 

Heat propagation into the subsurface occurs mainly by conduction, so that ground 
surface temperature (T) changes penetrate into depth following the heat conduction 
law [1]. The solution for an infinite-half space (Carslaw and Jaeger, 1959) is [2]: 
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Fig. 2. Attenuation with depth of waves of 
various frequencies and 1K of amplitude at the 
ground surface. Values in red (grey) correspond 

to a constant diffusivity value of 0.8 (1) · 10-6 
m2/s. Adapted from Pollack and Huang (2000). 

Fig. 1. Subsurface temperature series for various depths at Cotos (CTS; Vegas et al. 2020). Source: GuMNet (scan QR in red). 

3.	Real-life	subsurface	thermal	structure	2.	Heat	conduc4on	in	Land	Surface	Models	(LSM)	

Subsurface heat conduction in observations complies with the 
infinite-half space solution (see Fig. 1). Apparent heat 
diffusivity values can be determined by a classical analytical 
approach, assessing amplitude attenuation and phase shift of 
the annual wave with depth (CAA; Fig. 5; Smerdon et al. 
2004). An application of the CAA method to time series in the 
Iberian Peninsula shows spatial variability in apparent 
diffusivity that follows the spatial distribution of soil moisture 
(Fig. 6). 
 
However, the latter method requires several years of observa-
tions at various depths to perform a good fit of the parameters 
in Eq. [2] and derive α. This hampers the assessment of 
temporal variability. A new spectral attenuation-based method 
(SAM; García-Pereira et al., 2021) allows for retrieving the 
apparent diffusivity value of shorter time series by focusing on 
the attenuation at all frequencies (e.g. Fig. 7). The application 
of SAM to the time series of subsurface temperatures in Fig. 1 
allows for estimating the high-frequency changes of α. See an 
example for 10-daily estimates in Fig. 7. Apparent diffusivity 
follows observed soil moisture changes in time. 
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Fig. 5. CAA applied to Cotos (CTS) and 
Hoyas (HYS). Data in depth are 
integrated from different sources (see 
legend) down to 20 m. 

Fig. 6. Apparent diffusivity 
derived from CAA (a,b) and 
integrated soil moisture con-
tent (c) for some observatio-
nal (circles) and ERA-Interim 
reanalyisis subsurface tempe-
ratures down to 1 m in the 
Iberian Peninsula (Melo-
Aguilar et al., 2021). 

Fig. 7. (Left) SAM applied to CTS shallow 
subsurface temperature series in weekly 
resolution. (Upper rightl) Soil humidity 
(blue) and apparent diffusivity (red) at 
CTS from mid-2017 to 2021 in 10-daily 
resolution. Soil apparent diffusivity was 
calculated performing SAM in a 240-hourly-
data running window. (Lower right) 
Goodness-of-fit of SAM. 

Land Surface Models (LSMs) inclu-
de the physical processes that take 
place in the subsurface, as well as 
its interaction with other climate 
components (e.g. atmosphere, bios-
phere). The JSBACH LSM in MPI-
ESM is considered here (Reick et 
al., 2021). 
 

Thermal conduction in state-of-the-
art LSMs is biased due to a zero-
flux bottom boundary condition 
placement (BBCP), which is usual-
ly imposed at 2-10 m. This yields 
an unrealistic underestimation of 
amplitude attenuation and phase 
shift of low-frequency harmonics 
(Smerdon & Stiglietz, 2006). The 
amplitude attenuation bias in 
simulations with the JSBACH LSM 
decreases as BBCP depth is 
increased (Fig. 3), converging to the 
one given by the analytical infinite-
half space solution. 
 

Shallow LSMs enhance temperature 
rise in the near-surface in the his-
torical period and RCP scenarios 
(1850 – 2100).  

Fig. 3. Spectral amplitude attenuation 
curves between subsurface temperatures at 
two levels, 0.03 and 6.98 m, for different 
BBCP depths. Dashed lines represent the 
analytical solution, whilst solid lines are 
derived from global mean yearly averaged 
subsurface temperature simulated data 
coming from JSBACH, the land component 
of MPI-ESM (González-Rouco et al., 2021). 
Attenuation values at the low frequencies 
are zoomed in the inset. 

Fig. 4. Heat energy storage assessment 
in historical and RCP scenario 
JSBACH standalone simulations. 
From González-Rouco et al. (2021).  

Further, they underes-
timate the heat storage 
capacity of subsurface 
by up to 8 times in the 
RCP8.5 (Fig. 4; Gonzá-
lez Rouco et al., 2021). 
BBCP should be impo-
sed at least at 170 m to 
avoid attenuation bias 
(Steinert et a., 2021)  
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linearly phase-shifted with depth (z), depending on the harmonic frequency (f ) and 
thermal diffusivity (α). Figure 1 shows that very clearly for daily and annual signals 
in ground surface temperatures (GST) at an observational site. The diurnal cycle is 
completely filtered out in the first soil meter, whilst the annual cycle is hardly 
perceptible at 15 m. Figure 2 shows the dependence of attenuation on timescale and 
α. Signals penetrate deeper for longer timescales and higher diffusivity values. 
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CONCLUSIONS 

The analysis presented herein shows that: 
a] Climate models must include realistic representations of the subsurface as an infinite half-space with 
sufficiently large depths to represent well climate change responses. 
b]  A new method allows for deducing effective time and space estimates of thermal diffusivity with potential for 
improving model simulations and deriving reconstructions of (the otherwise scarce) soil moisture variability. 


