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Motivation Body Waves
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Introduction Primary (P) Waves
The popularisation of the use of large-N arrays of - ‘
seismometers has resulted in a significant increase of *
the size of the datasets recorded during these
experiments. Therefore, new challenges have arisen X
on how to process all these data efficiently, and in an 34.0° ’ X
automated fashion. This is particularly true in the case - Longitudinal, compressional waves
of induced seismicity monitoring, where often a large Vibration in the direction of propagation
number of number of events are recorded at high 4 Faster waves, arrive first at stations
frequency sampling rates. Secondary (S) Waves
Latest development in computational power and //
the popularization of GPUs have made possible to 33.5°7 \//%g\
- - N AR
apply machine learning methods to several problems, EH“;’E =E====”i’===§
from arrival picking and phase detection to l EEEEEEE EEEEEEEEEEEEE&
earthquake location. 241.5° giiiigt ‘Egiiiiw \
These methods have shown better results than other e T e s Transversal, shear waves
automatic pickers based on signal amplitude or Vibrate perpendicular to the direction of propagation
\hig h-order statistcs. Example of network of large-N stations: 5300 3-component stations. 10 km x 7 km / Slower than P waves, arrive later at stations
Automatic Picking
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A Simple Model Developing
‘ . » Yoo |e e
Model architecture Network Training
—20000 ~
Development of a simple model using Dataset (Southern California): 40000 -
convolution layers, widely used in computer Separable convolution + Batch Normalization # NTion selsmograms ' 0 5 10 15 20 25
vision problems, due to the visual nature of P - labelled as P-waves, 5-waves and noise 40000 -
phase picking when performed by an |
operator. . s o
Separable convolution + Batch Normalization N o %‘W‘WMMMWMW
Layers used 20000
Convolution: Max Pooling 5 o
learns local patterns 0 5 10 15 20 25
deeper layers learn complex patterns | 00
Separable convolution + Batch Normalization o " - 20000 ]
Batch normalization: TriePos MTrueNeg Folse Pos False Neg S J" U
allows deeper networks Values of True Positive, True Negative, False Positive
Separable convolution + Batch Normalization and False Negative obtained during the testing ~20000 1
Max Pooling: 40000 1
filters less significative values Data divided into: . . . .
Training data:  70% ’ ’ ° " 0 25
Flatten , 9 _ 0 1.0 1 AV
Flatten: Validation data: 10% ' 1y 'q
connects convolutional and dense layers Test data: 20% 0.8 |f|| ! ||
Dense " |
Dense: Results over test data: 04| \|| |
used as a classifier Accuracy: 98,3% . | '-.I .'| | f
i+ . ~ |/ .'
Architecture of the convolutional network developed False positives: 0,5% 0.0 Ll \ .."L_JL LHJ“\ M
(Il f;- lID l|5 EID 2|5
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Picker Performance

-

during 4 weeks.

Comparison with non Deep Learning picker

To evaluate the performance of Deep Learning pickers a test
has been conducted using the continuous recording data of a
large-N experiment with 441 stations on western Pyrenees

The data was processed using a DL picker (PhaseNet) and a
modern commercial picker based on high-order statistics.

In order to select picks that are compatible with seismic
events an associator was used in both cases.
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- PhaseNet: 352 events 64,595 seismic phases
- Commercial: 169 events 18,026 seismic phases
35
Bl PhaseNet
30 A B Commercial
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Detected picks using a Deep Learning and a commercial picker
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Horizontals and vertical components of a seismogram and
probability of detection of P (red) and S (blue) waves
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Different Deep Learning Pickers Comparison

-

Different pickers have
been compared using data
from a seismic crisis of
induced earthquakes in
the vicinity of the CASTOR
underground gas storage.

The obtained picks were
compared with the
dataset labelled by hand
by a human operator.

Metrics :

- Sensitivity:

True positives
Total picks

- False discovery rate:

False positives
Total picks

- Time difference between
DL and human picks
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