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Lumped element on-chip resonators for molecular spin qubits control and read-out 

M. C. de Ory1,2*, S. Roca3, V. Rollano3, M. Rubín – Osanz3, I.Gimeno3, M. T. Magaz2, D. Granados2, D. Zueco3, F. Luis3 and A. Gómez1*

1. Centro de Astrobiología INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain 
2. IMDEA-Nanoscience, 28840 Madrid, Spain

3. Instituto de Nanociencia y Materiales de Aragón (INMA), 50009 Zaragoza, Spain
* e-mail: mcalero@cab.inta-csic.es ; agomez@cab.inta-csic.es

LERs FOR MOLECULAR SPIN QUANTUM PROCESSOR

SUPERCONDUCTING LUMPED ELEMENT RESONATORS (LERs)

Resonance frequency 𝑓0

𝑓0 =
1

𝐿𝑇𝐶

Quality factor 𝑄

𝐿𝑇 = 𝐿𝑔 + 𝐿𝐾

𝑄 = 𝜔
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑

𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠/𝑐𝑦𝑐𝑙𝑒

Lumped element resonator (LER) [3]

ൗ1 𝑄 = ൗ1 𝑄𝑖
+ ൗ1 𝑄𝑐

𝑄𝑖 Internal quality factor

𝑄𝑐 Coupling quality factor 

LT Total Inductance

Lg  Geometric Inductance

Lk Kinetic Inductance
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Spatially separated RF fields mode volumes

Molecules magnetic / electric coupling

Low-frequency cryogenic characterization

Decrease the RF mode volume

FABRICATED LERs FOR CONTROL AND READ-OUT OF MOLECULAR SPIN QUBITS

Inductance geometry is tuned to couple to different spin systems

LERs for  single (few) spin coupling

Low impedance LERs to concentrate the magnetic field in a 

nanoscale constriction.[4]

Increase the RF mode volume

Inductance geometry 

controls magnetic field 

mode volume. 

• ANOMALOUS MATCHING EFFECT
• LERs coupled to magnetic molecules are a promising scheme for scalable quantum processors.

• Several LERs have been developed to be coupled with magnetic molecules.

• Cryogenic characterization demonstrate the accuracy of the electromagnetic design and validates the developed nanofabrication process.

• Close to strong magnetic coupling of the spin ensembles (G N~1 − 10 MHz ~1/T2) to different LERs is achieved.

• Low impedance LERs for single spin magnetic coupling.

• Promising high spin molecular system with axial anisotropy for electric spin control.

SUMMARY AND OUTLOOK

•Photons stored in an on-chip 
superconducting resonator. 

Multiple LERs can be coupled to a single 
transmission line

Frequency multiplexing

𝒇𝟏 =
𝟏

𝑳𝟏𝑪𝟏
𝒇𝟐 =

𝟏

𝑳𝟐𝑪𝟐

S21: Transmitted AC signal 

Transmission line
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•Reproducibility: identical 
microscopic qubits. [1]

•Tunability: fine tuning of 
qubit properties. [2]

•Scalability: Molecular NISQs.

𝑍 = 𝐿/𝐶

Laser 
lithography

100 nm Nb / NbTiN

Substrate (Si) Superconducting film Resist

Dry and wet etching

Oxygen plasma

Sputtering

Pre-designed LERs can be integrated in a single chip.  
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T= 17 mK

Simulation
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• High internal quality factors are obtained (long
photon lifetimes). 

• External quality factor can be tuned by design.

Measurement

GdW30

Molecular spin as qudit

Microwave electromagnetic simulations

MAGNETIC FIELD PROFILE

MAGNETIC COUPLING ELECTRIC COUPLING [5]

𝑵~𝟏𝟎𝟏𝟒 spins

𝑮𝑵 = 𝟓. 𝟗𝟖 𝑴𝑯𝒛
@ 4.2 K

LER8

LER7

Free radicals: PTM 𝐒 =
𝟏

𝟐
, 𝐠 ≈ 2

• Parallel-plate capacitors 

can be used to reduce the 

total inductance.

• Oxide layers introduce two-

level system noise.
Interdigitated capacitances

introduce large parasitic 

inductances.

Non demolition read-out

Two Qubits entangling gates

Strong coupling regime:

𝑔 >> 1/T𝜅, 1/T2

Quantum electrodynamics on a chip

 Multiple read-out with a single transmission line.
 High power pulses to implement gates.
 Photon-mediated interactions between different qubits. 

𝑱𝒆𝒇𝒇

Fabrication process Measurement set up

He3/He4 Dilution cryostat

T~ 11 mK

Cryogenic spectroscopic characterization

Electronic Spin: 𝐒 =
𝟓

𝟐
Nuclear Spin: 𝐈 =

𝟓

𝟐

Mn(Me6tren)Cl_ClO4 molecule

𝐻 = 𝜇𝐵𝑔𝐵 ∙ Ԧ𝑆 + 𝜇𝐼𝑔𝐼𝐵 ∙ Ԧ𝐼 + 𝐴 Ԧ𝑆 ∙ Ԧ𝐼 + 𝑫ȁȁ 𝑬 𝑆𝑍
2 + 𝑫⊥ 𝑬 (𝑆𝑥

2−𝑆𝑦
2)

Spin Hamiltonian:

𝐌𝒏+𝟐

Transmission line

Resonator

T = 10 mK

Spin ensemble volume= 
400 × 400 × 15 𝜇𝑚3

Spin density= 
2.1 × 109𝜇𝑚3

Dilution= 1 %

𝑓𝑟 = 8 GHz
κ = 500 kHz
γ= 1 MHz

erf= 1 𝑉/𝑚

Magnetic spectroscopy numerical simulations

On going LERs optimization for electric spin control.

𝛼17𝑚𝐾 =
𝐿𝑘

𝐿𝑘 + 𝐿𝐺
= 0.076

Frequency shift in 
measurements from Sonnet
simulations (Lk=0) due to kinetic
inductance fraction.

Clength = 761 and 751 mm

𝑆21 = 1 −
𝑄

𝑄𝑐

𝑒𝑖𝜙

1 + 2𝑗(
𝜔2 − 𝜔0

2

𝜔2 )

Quality factors from S21 fitting

𝑔 = 𝑁
𝑔𝑒𝜇𝐵𝑏𝑟𝑓𝜔𝑟𝑓

8ℏ𝑍𝑟

LERs with different f0, Q and L
have been designed, fabricated
and tested.
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DPPH 𝐒 =
𝟏

𝟐
, 𝐠 ≈ 2
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LERs for coupling to spin ensembles

𝐆𝐍 = 𝟏𝟐. 𝟓 𝐌𝐇𝐳
@ 4.2 K

Photon decay

rate:

𝜅

2𝜋
=

𝑓0

𝑄

•Interaction (g) between 
microwave photons (𝜔𝑟) and 
quantum mechanical two-
level systems (Ω).

Molecular spin quantum processor

Energy levels

Electrical driven transitions


