Optimization of graphene-based gas sensors by ultraviolet photoactivation.

Instituto de Tecnologi Físicas y de la Informació Álvaro Peña^{1, 2, *}, Daniel Matatagui ^{1, 3}, Filiberto Ricciardella ⁴, Leandro Sacco ⁴, Sten Vollebregt ⁴, Daniel Otero¹, Jesús López-Sánchez⁵, Pilar Marín^{1,3}, M. Carmen Horrillo².

¹Instituto de Magnetismo Aplicado, UCM-ADIF, 28230 Las Rozas, Spain ²SENSAVAN, Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain. ³Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain ⁴Department of Microelectronics, Delft University of Technology, Feldmannweg 17, 2628 CT Delft, the Netherlands. ⁵Department of Electroceramics, Instituto de Cerámica y Vidrio (ICV), CSIC, 28049 Madrid, Spain.

Graphene

Other technologies

SnO2

ZnO

Publications of the last 5 years containing

Nitrogen dioxide + sensor +...

Nitrogen dioxide (NO₂) is an air pollutant derived from human activity that may cause or exhacerbate respiratory complications. We need technologies capable of monitoring NO₂ below toxic level, i.e., sub-ppm range or lower.

A MAR	
$\dot{\mathcal{O}}$	

Recommende limits	d exposure	Estimated lethal concentrations	Typical concentrations in urban areas
Daily	Yearly	(1 hour)	(USA & UK)
0.1-1 ppm	0.02 ppm	174 ppm	0.4-0.5 ppm

Sensors based on the chemiresistive principle, upon analyte exposure the materials electrical properties change, have tipically used metal oxides as actives materials. However, they need to opérate at high temperature which represents a major drawback to their application.

In this context, graphene and other graphene-based materials, with outstanding surface area and high conductivity at room temperature, represent and interesting alternative as active materials.

However, graphene-based gas sensors present poor recovery after the exposure to the analyte, which hinders their potential applications in real life conditions.

In this work we show how the use of UV irradiation can overcome this problem, increase sensitivity and achieve a limit of detection below the toxicity levels. Interestingly, UV does not damage the material.

CO Gas Mixer

The active material used in the device was multi-layer graphene (MLG) grown with CVD over a silicon wafer using a transfer-free method. Gold contacts were then sputtered and wire bonded to build the device electronics.

The MLG presented a low defects ratio (Raman I(D)/I(G) ratio of 0.266) and surface roughness of (AFM). The device presented ohmic resistance (I-V curves).

We tested the device towards NO2/Air – 1 ppm, CO/Air – 10 ppm and NH3/Air – 10 ppm using a 275 nm LED as a UV source. The device operated under continuous UV irradiation (UV@100, 68 W/m² and UV@50, 34 W/m²), under UV irradiation during the purge phase only (UV@DES) and under no UV irradiation (UV@DARK)

The effect of UV irradiation on the performance of graphene-based gas sensors can be explained through two main mechanisms that occur simultaneously: The photogeneration of electron-hole pairs and the photodesorption of contaminants, often referred to as in-situ cleaning.

The incident photons create photogenerated electron-hole pairs. For graphene, the photogeneration is caused by absorption in the 275 nm wavelength, related to π - π^* electron promotion, according to the following relation:

$$hv \rightarrow e^-_{(hv)} + h^+_{(hv)}$$

The photogenerated charge carriers can then interact with adsorbed molecules, such as water and oxygen species, both electron donors, and cause photodesorption:

$$h^+_{(hv)} + 0^-_{2(ads)} \rightarrow 0_{2(gas)}$$

Since the experiments used air as a carrier, the photogenerated electron can promote the additional adsorption of

The use of UV significantly increased the response and promoted full recovery, i.e., when the sensor was not exposed to the analyte it recovers its initial conditions, greatly enhancing reproducibility.

oxygen, leading to highly reactive photoinduced oxygen ions:

 $0_{2(gas)} + e^-_{(hv)} \to 0^-_{2(hv)}$ These reactive ions can act as binding sites for the analytes with higher affinity to graphene, like NO₂:

 $2NO_{2(gas)} + O_{2(hv)} + e_{(hv)} \rightarrow 2NO_{2(ads)} + O_{2(gas)}$

Meanwhile, the adsorption mechanisms that operate no irradiation conditions, i.e., the charge transfer from analytes, still occurs under UV irradiation but are further promoted by the excess of charge carriers from the photogeneration process.

Material	Main approach	Analyte	Response	Effect of UV/ Other (If no UV)	DOI
rGO		$NO_2/N_2 5 ppm$ $NH_3/N_2 5 ppm$	13% 2.5%	-	10.1021/nn800593m
СМТ	Continuous UV: 253.7 nm, 1.7 mW/cm ²	NO/ Air 200 ppm	36%	5-fold increase but reduced lifetime under UV and material removal.	10.1038/srep00343
Mechanical exfoliated graphene	Pristine Defective graphene (I(d)/I(g)= 0.24) Defective graphene (I(d)/I(g)= 0.59)	NO_{2}/N_{2} 100 ppm NO_{2}/N_{2} 100 ppm NO_{2}/N_{2} 100 ppm	11% 32% 18%	Sensor achieved full recovery under UV with neglectable side effects.	10.1016/j.cartre.2021.10
Graphite		NO ₂ / Air 0.5 ppm	3.32%		
Ball milled graphone		NO ₂ / Air 0.5 ppm	14.52%	Slight improve in response and	10.1016/j.snb.2021.129657
Bail-IIIIleu graphene	Continuous UV: 275 nm	NO ₂ / Air 0.5 ppm	15.97%	recovery under UV	
CVD-graphene		CO/ Air 100 ppm NO ₂ / Air 100 ppm	3% 18%	-	10.1021/jp100343d
CVD-graphene	High temperature operation (150°C)	NH ₃ / Air 65 ppm	2.1%	-	10.1016/j.msec.2011.05.008
CVD-graphene	Heat (200°C) and vacuum to force desorption	NO ₂ / Air 10 ppm NH ₃ / Air 10 ppm	15% 17.5%	_	10.1063/1.4720074
CVD-graphene	Pristine Defective graphene (I(d)/I(g)= 0.04) Defective graphene (I(d)/I(g)= 0.12) Defective graphene (I(d)/I(g)= 0.38) Defective graphene (I(d)/I(g)= 1)	NO ₂ / Air 100 ppm	9.6% 15% 20% 13.3% 7.8%	_	10.1039/c6cp07654h
CVD-graphene	Pristine Defective graphene (I(d)/I(g)= 0.1-1.1)	NO_2 / He 200 ppm NH_3 / He 200 ppm NO_2 / He 200 ppm NH_3 / He 200 ppm	40% 3.5% 53% 25%	_	10.1016/j.snb.2012.02.036
Commercial granhene	Pristine	NO_2 / Air 5 ppm	9.75%	Continuous high-temperature operation	10 1088/0957-
substrate	Defective graphene (I(d)/I(g)= 0.065)	NO ₂ / Air 5 ppm	9.1%	150°C was used to improve recovery	4484/23/50/505501
CVD-graphene on a flex. substrate	Recovery under UV: 254 nm, 2.5 mW/cm ²	NO ₂ / Air 2.5 ppm	65%	Sensor achieved full recovery under UV without damages.	10.1021/am5084122
CVD-graphene	Continuous UV: 370 nm	$NH_3/N_2 0.6 ppm$	1.89%	10-fold increase	10.1016/j.vacuum.2016.08.006
CVD-graphene	Continuous UV: 253.7 nm, 1.7 mW/cm ²	$NO_2/N_2 0.4 ppb$ $NH_3/Ar 2 ppb$	3.6% 1.4%	UV significantly lowered the LoD with neglectable side effects.	10.1063/1.4742327
CVD-graphene	Continuous UV: 265 nm, 1.68 mW/cm ²	NO ₂ / Air 100 ppm NH ₃ / Air 100 ppm CO/ Air 100 ppm	26% 1.6% 1.2%	7-fold increase3-fold increase6-fold increase	10.1021/acsomega.9b00935
	Continuous UV: 275 nm, 3.4 mW/cm ²		3.1%	5-fold increase	
CVD-granhene	Continuous UV: 275 nm, 6.8 mW/cm ²	100_2 All 1 ppm	1.7%	3-fold increase	This work
CvD-graphene		CO/ Air 10 ppm	1.2	3-fold increase	(soon to be published)
	Continuous UV: 275 nm, 3.4 mW/cm ²	NH ₃ / Air 10 ppm	1.7	3-fold increase	

Different approaches have been considered to improve the performance of graphene-based gas sensors, the most common are: Material selection • Techniques to increase the active surface • Defects engineering Use of UV irradiation Use of high temperatures • Functionalization with nanoparticles (metals or metal oxides)

structure, we obtained high

Graphene.

25 ppb.