

Cosmological particle production in the lab

Jose A. R. Cembranos, Luis J. Garay and Álvaro Parra-López*,

Department of Theoretical Physics and IPARCOS, Complutense University of Madrid, Spain *e-mail: alvaparr@ucm.es

1. Introduction

Motivation

- Gravitational particle production is a phenomenon that arises when considering quantum field theory in **curved spacetime**
- It is due to the observer-dependence of the vacuum and can explain, for example, the abundance of dark matter

3. BECs as analog system

• Most extended analogy makes use of a spin-0, 2D, weakly interacting Bose-Einstein condensate, described by the complex field Φ ,

$$\Phi = \text{background} + \text{fluctuations} = \phi_0 + \frac{1}{\sqrt{2}} (\phi_1 + i\phi)$$

• The system can be adjusted such that the **phononic fluctuations** behave as a massless scalar field in a FLRW universe:

Universe	BEC experiment
Spacetime	Background
FLRW metric	Acoustic metric
Massless scalar particle	Phonons

• Direct measurement in such cosmological scenarios is out of reach, so the use of **analog models of gravity** has been proposed

Objectives

- 1. Study particle production during **inflation** for different fields as well as investigate the vacuum ambiguity in non-stationary situations.
- 2. Simulate cosmological production of particles for several scenarios in analog systems such as **BECs**, and measure it experimentally.

2. Particle production during inflation

• We consider a massive scalar field φ non-minimally coupled to gravity in a flat FLRW spacetime, described by the action [1]

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} \left[\partial_\mu \varphi \partial^\mu \varphi + \left(m^2 + \xi R \right) \varphi^2 \right]$$

• Action for the fluctuating field ϕ in a static background and assuming low momentum excitations [2]:

$$S_2[\phi] = \frac{1}{2} \int \mathrm{d}^3 x \sqrt{g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi,$$

with $g_{\mu\nu}$ being the **acoustic metric**, corresponding to

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \frac{m}{\lambda(t)n_0(r)} \left(\mathrm{d}r^2 + r^2\mathrm{d}\varphi^2\right) \equiv -\mathrm{d}t^2 + \frac{a^2(t)}{n_0(r)} \left(\mathrm{d}r^2 + r^2\mathrm{d}\varphi^2\right)$$

Expansion of the universe is realized through a time-dependent in-teraction strength $\lambda(t)$, achieved from **Feshbach resonance** [3]

Dynamics of the inflaton $\phi(\eta)$ determines the Ricci scalar $R(\eta)$

• Our system is initially in the state $|0_a\rangle$ and we calculate the number of particles after inflation according to an observer living at this time

 $n^{b} = \int d^{3}\boldsymbol{k} \left\langle \boldsymbol{0}_{a} | \hat{\boldsymbol{n}}_{k}^{b} | \boldsymbol{0}_{a} \right\rangle$

• Relation between the density contrast measured δ_c and correlations of the field ϕ originated from particle production is given by [2, 4]

 $\langle \delta_c(t, \boldsymbol{r}) \delta_c(t, \boldsymbol{r}') \rangle \sim \langle \{ \dot{\phi}(t, \boldsymbol{r}), \dot{\phi}(t, \boldsymbol{r}') \} \rangle_c \sim n_k^b$

Density fluctuations for an expansion of the form $\lambda(t) \propto t^{-2\gamma}$ [3]

Particles produced after inflation as function of m, ξ [1]

4. Conclusions and outlook

- Particle production of a scalar field has been solved within a complete, slow-roll inflationary model, for FLRW universes of any curvature
- We simulated particle production in a BEC for a massless scalar field
- The aim is to investigate vector and spin-2 fields and analogs of them

References

Jose A. R. Cembranos et al, in preparation, (2022). Mireia Tolosa-Simeón et al, Phys. Rev. A 106, 033313, (2022) $\left[2\right]$ Celia Viermann et al, Nature, 10.1038/s41586-022-05313-9, (2022) 3 Natalia Sánchez-Kuntz et al, Phys. Rev. D 105, 105020, (2022) 4

This work was supported by the MICINN projects PID2019-107394GB-I00 and PID2020-118159GBC44. Additionally, Á.P.-L. is supported by the MIU fellowship FPU20/0560.