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Results: Interactions

The energy depot model [1| consists of active
Brownian particles which can take energy trom Velocity alignment phase transition
the medium, store it into an internal energy de-
pot, and convert it to kinetic energy. The fol-
lowing Langevin equation describes motion of a
particle with mass m, position r and velocity v 1. disordered: No flocks or velocity alignment.
and friction coefficient v(v) in the model.

The system present two different phases

2. ordered: Flocks of particles appear alongside with velocity alignment.

v=—y(V)Vv— EVU (r) + F(t) To characterise the phase transition we study the velocity polarization (|P(t)]) =
; <|% ij:l exp (i0x(t)) > where 0 is the angle formed by the particle’s velocity:.
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2D suspension of N = 2000 particles in a square 10

box of area A = L? with periodic boundary con-
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o . a)Left: Mean polar order parameter as a function of gy parameter for the studied volume fractions
ditions and surtace fraction ¢ = =%

¢. b)Top right: Snapshot of a system of ¢ = 0.2 and gy = 5. ¢)Bottom right: Snapshot of a system
of o = 0.2 and qg = 10.

Finite Size Scaling analysis for ¢ = 0.3 We study the polarisation (left) and the Binder cumulant
U, (right).

1. Point particles with no interaction be-
tween them

2. Repulsive disks of radius o. The repulsive
Interaction between the particles is imple- , | | | . | | . .
— N=100 o—e N=100,L=16.18
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We have chosen to fix ds, ¢ and study the system i ‘ i -

in a range of values of gy and .
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9 =0 qo =11 >

a0 =20 At short times, the motion of
: qboaii?;(’zic ~ all particles is ballistic.
At long timescales, the motion
depends on the transition.
If the flocks have not formed,
the motion is diffusive, and
MSD ~t.
When the flocks form at qg
large enough, at long times

the system is superdiffusive
and MSD ~ t.

Two regimes [2|;

1. When ~(v) > 0 the motion is damped,
meaning that the particles behave as a self- .
persistent Brownian motion. OﬂgOlﬂg work
e Understand the structural origin of the phase transition.

2. When ~v(v) < 0 we have negative fric-
tion, and the motion of the slow parti-

cles is pumped as if the particles had an
additional source of energy. This is how References

we achieve active motion through negative [1] Erdmann, U., Ebeling, W., Schimansky-Geier, L., Schweitzer, F. (2000). Brownian particles far from equilibrium.
friction.This supercritical pumping means The European Physical Journal B-Condensed Matter and Complex Systems, 15(1), 105-113.

e Study the stochastic thermodynamics of a system of interacting disks.
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