

Deep-PRC: Artificial Intelligence-Based Positron Range **Correction in Nuclear Medicine**

Nerea Encina-Baranda¹, Alejandro Lopez-Montes³, Joaquin L. Herraiz^{1,2}

¹Nuclear Physics Group and IPARCOS, University Complutense of Madrid (IdISSC), Madrid, Spain ² Health Research Institute of Hospital Clínico San Carlos (IdISSC), Madrid, Spain

³ JHU Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America

nencina@ucm.es

Positron Emission Tomography (PET) is a medical imaging technique based on beta+ decay and the annihilation of a positron and an atomic electron. Detectors capture the gamma rays emitted, defining the annihilation location and generating an image of the tracer's distribution in the body.

INTRODUCTION

The **Positron Range (PR)** is the distance travelled by the positron right after the beta+ decay and it varies based on:

RESULTS

- MC Simulation Results

The image obtained using ¹⁸F was established as ground truth. The ⁶⁸Ga image represents the target for correction through the Deep-PRC technique and an iterative-standard PRC method using a constant PSF.

Notably, a distinct enhancement in image quality was observed with the implementation of the deep-prc approach. Specifically, when focusing on the bladder and myocardium line profile, Deep-PRC demonstrated a superior recovery of activity compared to the Iterative Standard method (R-L).

Grupo de Física Nuclear @ UCM

- The electron density of the medium, influenced by the type of biological tissue (e.g., water, bone, lung, air, muscle).
- The energy of the positrons emitted and, therefore, the nuclei (e.g, ¹⁸F, ⁶⁸Ga, ¹²⁴I).

Many of the proposed radionuclides for PET emit high-energy positrons have a large PR, causing **significant blurring** in the reconstructed images and **degrading PET image resolution**.

Fig. 1. a) Positron emission energy spectrum for ¹⁸F and ⁶⁸Ga, b) distribution of annihilation points in water and lung. PR can range from hundreds of microns to a few millimeters.

The goal of this work is to correct the PR (PRC) using Deep Learning applied as a post-processing step to the reconstructed PET images, specially for those radionuclides with a large PR (i.e: 68 Ga, 124 I).

METHODOLOGY

- Results Quantification

The corrected images have been quantified with Root Mean Square Error (RMSE) using ¹⁸F as reference. Also, the results have been compare using Noise, Contrast and Spatial Resolution (FWHM) using the bladder as Region of Interest.

Standard PRC	Deep-PRC	RMSE
À	R	(%) 2

Table 1. Results	Noise [%]	Contrast [-]	FWHM [mm]
⁶⁸ Ga Image	9.51	3.37	8.80 ± 0.30
¹⁸ F Image	8.86	5.41	6.40 ± 0.38
Iter. Standard Method	24.40	5.16	7.72 ± 0.10
Deep-PRC Method	5.37	5.56	6.28 ± 0.36

Fig. 3. Adapted Numerical Phantoms.

a) Anthropomorphic computational mice models have been used to characterize the physics and anatomy of laboratory animals in order to simulate radiation transport and simulate radiopharmaceuticals' behavior, **b**) Digimouse, c) MOBY

Another effect that has been observed in the results is Deep-PRC's ability to recover lost activity in low-density regions like the lungs. This effect is evident when dealing with nuclei emitting positrons with large PR.

Deep-PRC has been tested on real ⁶⁸Ga acquisitions of the Inveon Scanner from Memorial Sloan Kettering Cancer Center Hospital (New York, EEUU).

CONCLUSION

Fig. 3. Deep-PRC. a) U-NET Architecture, b) multiple overlapping 3D patches extracted from the 3D images were utilized to train the U-NET. This technique significantly increased the number of training samples and enhanced the robustness of the neural network.

Iterative Standard PRC Method

Considering a point-like source emitting positrons, it is possible to obtain the distribution of annihilation points in 3D (PSF, Point Spread Function) and project it onto the Z direction to obtain a 2D distribution. Once the PSF image is available, deconvolution is performed using the **Richardson-Lucy** (R-L) method to correct the blurring due to PR.

3D Patch

Deep-PRC offers a rapid and precise Positron Range Correction (PRC) approach to restore resolution and activity loss in PET studies, as well to minimize noise, particularly with radionuclides like ⁶⁸Ga that emit positrons with significant PR, outperforming the standard PRC method.

→ Deep-PRC could help to identify pathologies that could be overlooked when dealing with specific radionuclides.

Acknowledgement

Collaboration with Siemens Healthineers (Art. 83) for the implementation of Deep-PRC in acquisitions involving human patients using the clinical Biograph Vision PET/CT Scanner.

References

[1] Cal-Gonzalez et al., 2018. Molecular Imaging and Biology, 20(4):584–593 [2] Herraiz, J. L., Bembibre, A., Lopez-Montes, A., 2020. Applied Sciences, 11(1), 266. MDPI AG [3] Sempau, J. and Andreo, P., 2006. Physics in Medicine and Biology, 51(14):3. [4] Dogdas B et al., 2007. Med. Biol. 52 577 [5] Segars W P et al., 2004. Mol. Imaging Biol. 6 149–59