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1. Introduction
Finding thermal equilibrium may be difficult, specially if
one needs to do it fast. However, because reaching ther-
mal equilibrium is a very important problem in industry,
technology, and science, the non-equilibrium process are
very studied, trying to answer the question:

How can we reach thermal equilibrium faster?

There are some examples of different non-equilibrium dy-
namics that allow a faster equilibration, like

• Mpemba effect [2],
• annealing techniques [3],
• stochastic reset.

In particular, Admit and Raz designed a strategy for sys-
tem with time-scale separation [4]. Nevertheless, what
happen with systems with a continuum time scale, e. g.
a 2nd phase transition? So, in this work we try to answer
the question:

What is the fastest way to reach thermal equilibrium
in systems with a 2nd order phase transition?

Model
Ferromagnetic Ising model in 2D

H =−J ∑
〈x,y〉

σxσy , (1)

with σx = {±1}, 〈 , 〉 the sum over nearest-neighbors,

in a thermal bath at inverse temperature κ = J
KBT , energy

units J = 1, and system size L = 4096. The system has a
2nd phase transition at κc ' 0.44068, which a paramag-
netic phase (PM) for κ < κc, and a ferromagnetic phase
(FM) for κc < κ . We know exactly Eeq = E (t→∞) [5].
We use the Metropolis (MET) and Heat-Bath (HB) dy-
namics rules (model-A universality class [6]).

Observables
Finally, in order to study our system we consider:

• the correlation function
C(r; t) = 1

L2 ∑x〈σx(t)σx+r(t)〉 ,
• the energy density E (t) =−2C(rmin; t),
• and the coherence length ξ (t).

Thermal protocols
Isothermal Protocol (1P)

1 Generate a disordered spin configuration.
2 Put the configuration in a thermal bath at
inverse-temperature κ (t = 0).

3 Evolve the configuration t Monte Carlo steps.
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Figure 1: Cartoon of the system evolution using 1P. Schematic repre-
sentation of the coherence length ξ .

Two-step Protocol (2P)
1 Generate a disordered spin configuration.
2 Put the configuration the FM phase.
3 Evolve the system until ξ (t∗) = ξstart.
4 At t = 0 heat back to the PM phase.
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Figure 2: Coherence length ξ as a function of time t for 1P and
MET (the width of the curves is twice the statistical error; κ increases
bottom to top). Inset: Comparison of the HB and MET for κ < κc.
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Figure 3: Cartoon of the system evolution in 2P.

2. Results

Isothermal evolution
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Figure 4: Energy density E (t) from our 1P as a function of 1/ξ (t),
computed for κ = 0.6. Inset: as main panel, for all our values of κ .

• In FM phase: [E (t)−Eeq] ∝ 1/ξ (t). ⇒ Extends to
PM phase!

Can we use the FM faster magnet domains formation
as an accelerator for the dynamics in the PM phase?

Exponential speed-up
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Figure 5: Excess energy E (t)−Eeq versus e−t/τκ (MET) for 2P (τκ

is obtained by fitting our ξstart = 0 data).

• PM and t→ ∞: E (t)−Eeq = A (ξstart)e−t/τκ .
• A (ξ ∗start) = 0⇒ Exponential speed-up.
• ξ ∗start 6= f (κstart), and (κc−κend)ξ (κend) = cte.
• lim

κ→κ
−
c

[
ξ ∗start
ξend

]
= 0.59(7) ⇒ Universal for model-A.

3. Discussion

Real speed-up
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Figure 6: Energy density as a function of the total time elapsed since the
beginning of 2P, ttotal (MET). The width of the curves is twice the statistical
errors (ξstart increases from top to bottom). The horizontal lines correspond
to Eeq multiplied by 1.001,1 and 0.999. Inset: coherence length during
the 2P as a function of the time t.

Equilibration time
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Figure 7: Equilibration time t0.1%
eq (defined as the last time the system has

an energy with a difference less than a 0.1% from Eeq) versus ξstart for 2P.
versus ξstart for 2P. The width of the curves is twice the statistical errors.The
discontinuity is due to the non-monotonic time behavior of E (ttotal).

4. Conclusions

• Precooling may produce a faster equilibration at high T .
• The speed-up is driven by the magnetic domains in FM

phase.
• An exponential speed-up is possible if the size of the

magnetic domains is a well-defined fraction of the
equilibrium correlation length in the high T phase.

• This will valid for the whole model-A universality class.
• We can use this mechanism with our two-step protocol.
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