

Impact of Proton Irradiation on **TMO-Based Solar Cells.**

S. Duarte-Cano*, M. Rezaei², D. Caudevilla¹, S. Algaidy¹, J. Olea¹, E. San Andrés¹, A. del Prado¹, D. Pastor¹, E. García-Hemme¹, F. Pérez-Zenteno¹, R. Benitez¹, G.Godoy¹, F. J. Franco¹, J. A. Clemente, I. Torres³, R. Barrio³, E. Ros⁴, J. Puigdollers⁴, P. Ortega4, C. Voz⁴, C. Armenta-Deu¹, R. García-Hernansanz¹

¹Dpto. EMFTEL, Fac. CC. Físicas, Univ. Complutense de Madrid, 28040, Madrid, Spain; <u>*seduarte@ucm.es</u>, ²Dpto. ACYA, Fac. CC. Informática, Univ. Complutense de Madrid, 28040 Madrid, Spain ³Unidad de Energía Solar Fotovoltaica, Dpto. de Energías Renovables, CIEMAT. Madrid, Spain. ⁴Dpt. d'Enginyeria Electrònica. Universitat Politècnica de Catalunya, Barcelona, Spain

MOTIVATION		FABRICATION
Solar cells able to work under harsh conditions (space	FBRICATION PROCESSES Δ <th>Ag MoO_x Solar Cell</th>	Ag MoO _x Solar Cell
missions) solar cells	80 nm layer of ITO RF magnetron sputtering	ITO MoQ (p)
Alternative TMO-Based Solar Cells	15 nm of MoOx layer PECVD (SiH4 + Ar 5%)	n type c-Si
	Crystalline silicon substrate with a resistivity of 2.6 Ωcm	

	Total			$4.94 imes 10^{10}$	5.93	
Spring 2023	CAS	2.1×10^{9}	16.04	6.91×10^{9}	0.81	
		1.20 ** 10	10.00	1.25 / 10	0.12	

+ 150 um De	epth vs. Y-Axis	
-		
-30		
-		
Laye'r		
- 150 um	Target Depth	300 um

lon nergy	dE/dx	dE/dx	Projected Range
MeV)	Elec	Nucl	(μm)
11.0	3.23E-2	1.64E-5	709.23
13.0	2.84E-2	1.41E-5	1120
15.0	2.54E-2	1.24E-5	1440
16.0	2.42E-2	1.17E-5	1610
18.0	2.20E-2	1.06E-5	1990

- research on this topic.

References

[1] Verduci, R., Romano et al. Advanced Energy Materials, 12(29) (2022). [2] Shen, X. B. et al. AIP Advances 9, 075205 (2019) [3] R Garcia-Hernansanz. et al. Solar Energy Materials and Solar Cells, 185, 61–65. (2018). [4] Paulescu, M. et al AIP Conference. Proceedings, 1796, 120002. (2017).

ACKNOWLEDGMENT

The authors acknowledge the "CAI de Técnicas Físicas" of the Universidad Complutense de Madrid for the dark characterization equipment. Also, to the Universitat Politecnica de Catalunya for the HIT-like and Moox solar cells. Also, to the "Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas" CIEMAT for assistance and technical advice on the illumination characterization and finally to RADNEXT for the support in resources and management of entities in the process of solar cell radiation with ASCUAS project.

