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Figure 1 | Experimental protocol of symmetry breaking and symmetry
restoration. a, Positions of the fixed (F) trap (blue dashed line) and moving
(M) trap (red dashed line) as functions of time during the protocol.
Ensemble average position of the trapped bead after implementing the
protocol cyclically for t=2,400s over F trajectories (blue solid line) and M
trajectories (red solid line). b, Spatial–temporal mapping of the potential
U(x, t) obtained from the statistics of trajectories of the bead for t=2,400s
in the presence of an external force such that pF =0.8. The colour bar on
the right indicates the depth of the potential energy (in units of kT). A
single trajectory of the bead when it chooses the M trap is also plotted
(white line).

Owing to the presence of inherited electrical charges at the
surface of the bead, we can bias the motion of the bead towards the
M or F trap by applying a voltage to electrodes inserted in the fluid
chamber18 (Supplementary Section II).

The protocol can be considered quasistatic for velocities around
100 nm s�1 or lower, for which the heat dissipation due to friction
force is of the order of � v2

trap ⇡ 10�22 J s�1
⇡ 0.02 kT s�1, where

� =6⇡R⌘ is the friction coe�cient, R= 0.5 µm is the radius of
the bead, and ⌘ = 8.9⇥ 10�4 Pa s is the dynamic viscosity of water

at 25 �C. We have implemented two quasistatic protocols with
vtrap =100nm s�1, ⌧2 =2s, and vtrap =36.36nm s�1, ⌧2 =5.5s.

During step 2, Kramers transitions19 trigger the SB. This can be
seen clearly in the trajectory of the bead presented in the bottom
panel of Fig. 1. At the end of the SB protocol (steps 1–2–3),
Kramers transitions are not observable, and one can unambiguously
distinguish two final meso-states for the bead position: the particle
either stays at the F trap (F trajectories) or moves with the M trap
(M trajectories). In the top panel of Fig. 1, we show the ensemble
averages of the position of the bead calculated over F (blue curve)
and M (red curve) trajectories.

The potential U (x , t) along the protocol (bottom panel in
Fig. 1) was obtained from the empirical probability density function
(PDF) calculated combining data from both the SB and the SR.
In the SB, the potential changes smoothly from monostable to
bistable, with an energy barrier that increases with time. The
Kramers first-passage time from the F to the M trap, ⌧ F!M

K ,
calculated from the potential shown in Fig. 1 and assuming one-
dimensional motion, increases with time smoothly from ⌧min = 0 s
to ⌧max =5.7⇥105 s=6.62days. For the twoquasistatic protocols, the
total duration of the process is of the order of seconds. Consequently,
ergodicity is e�ectively broken because the particle does not have
enough time to jump from the F to the M trap at the end of the
process (Supplementary Section V).

From the energy landscape U (x , t), we were able to measure
the heat or energy transfer from the thermal reservoir to the
Brownian particle for individual trajectories20,21 and for di�erent
values of the external force and therefore of the probability of
choice pi (Methods and Supplementary Section III). The average
conformational entropy production over the M and F realizations
for the SB and SR is calculated from the heat and the Shannon
entropy, using equation (2), and plotted in Fig. 2 as a function
of ln pi for the SB (Fig. 2a) and ln p̃i for the SR (Fig. 2b). These
figures are the main result of the paper. The experiment confirms
the dependence of the entropy on the probability of adopting a
given instance given by equation (2). In the case of the SB, the
negative conformational entropy production is clearly observed
and the theoretical dependence is reproduced, except for very low
probabilities pi . e�2 '0.05. We have included error bars calculated
using the statistical dispersion of the heat over a large number
of cycles. The error in the empirical potential U (x , t) and in the
Shannon entropy of the initial and final states, however, has not
been taken into account and could be significant for small pi,
because the number of data points is low. This lack of statistics
could explain the discrepancy between the experimental result and

−5 −4 −3 −2 −1 0
−5

−4

−2

−1

0

−3

ln p~ ln p~
−5 −4 −3 −2 −1 0

0

1

2

3

4

5

S p
ro

d (
k)

S p
ro

d (
k)

a b

Figure 2 | Energetics of symmetry breaking and symmetry restoration. a, Ensemble average conformational entropy production in the symmetry breaking
(SB), hSprodi

(SB)
i (in units of k) as a function of the probability pi of adopting instance i= fixed (F), moving (M). b, Ensemble average conformational entropy

production in the symmetry restoration (SR), hSprodi
(SR)
i (in units of k) as a function of p̃i. Results shown as open symbols were obtained using the fast

protocol (⌧2 =2s), and results shown as filled symbols were obtained using the slow protocol (⌧2 =5.5s). Blue squares represent the ensemble averages
over F trajectories, and red circles represent the averages over M trajectories. Error bars were obtained using a statistical significance of 90%.
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Figure 2 | Toy model of a memory. A Brownian particle in a double-well
potential with position y can be stably trapped in either the left or right well,
which represent the mesoscopic informational states m=0 and m= 1 of a
bit. The memory can either be symmetric (a) or asymmetric (b).

be readily derived32–34. For example, the integral fluctuation
theorem is

he��(w�1F)�Ii=1 (7)

which has been experimentally verified with a Szilárd engine
composed of a single electron14. Applying Jensen’s inequality to
equation (7), one obtains the inequality (5).

Equation (6) indicates that the inequality (5) can be saturated
at the level of individual trajectories if the feedback process and
its reverse are indistinguishable—or, in other words, if the process
is reversible. This observation points to a generic method to
engineer optimal feedback protocols—by finding a process that
looks like the feedback process when run in reverse. In particular,
the reverse process must always prepare the conditioned state right
after the measurement. If we can find such a reverse process,
by reversing it, we recover an optimal feedback protocol. This
preparation procedure has been used to design optimal protocols
for multi-particle Szilárd engines35,36. One particular version of this
preparation procedure is analogous to the optimal work protocol
described in Box 1, and other reversible protocols have been used
in models of feedback-controlled harmonic oscillators37,38.

The physical nature of information
Memories and Landauer’s principle. At first glance, information
is an abstract quantity, independent of its physical implementation.
However, when we make a measurement, the outcome has to be
recorded in some physical system, whether it be written on a piece
of paper or stored in a computer’s hard disk. This was originally
recognized by Szilárd4, but Landauer captured it best with his
aphorism: ‘Information is physical’39.

To function as a memory, a system must have several,
distinguishable ‘informational states’ in which the information is
stored. For reliable information storage without degradation, these
states must have long lifetimes, be robust against environmental
noise and be possible under the same external constraints. From the
point of view of statistical mechanics, these requirements demand
that for a system with microstates y to function as a memory, it has
to possess multiple, distinct metastable states under its Hamiltonian
H(y). In other words, ergodicity must be broken—or e�ectively
broken for the timescale for which the memory is reliable. In
practice, this means its phase space 0 is split into ergodic regions,
{0m}, one for each informational state m (ref. 16). This loss of
ergodicity can be induced by a phase transition in a collective
coordinate, such as the magnetization of a small ferromagnetic
domain in standard magnetic memories, or by raising high free-
energy barriers separating microscopic degrees of freedom, as in
single-electron memories or in DNA base pairing.

The statistical state of the memory is characterized by the
probability pm to be in one of its ergodic regions. We can go further
by assuming that the memory is locally in equilibrium, so that the
conditional probability given informational state m is a canonical
distribution over 0m, the region in phase space compatible with m.
This distribution has an average energy Em and a Shannon entropy
Sm. The non-equilibrium free energy (2) of a memory M can be
written in terms of these quantities as

F(M) = hHi⇢ �TS(⇢)

=
X

m

pmFm �kTH(M) (8)

where Fm =Em �TSm is the free energy of the conditional state. Here
the memory’s entropy S(⇢) has been decomposed into the Shannon
entropy of the informational states,H(M)=�P

m pm lnpm, and the
average of their individual, internal entropies Sm.

An illustrative example of this set-up is the toy model of a one-
bit memory depicted in Fig. 2. The memory consists of a Brownian
particle in a double-well potential. When the barrier is much higher
than the thermal energy, the particle will remain in either well for a
long time. Thus, the particle being in the left or right well can serve
as the stable informational states, ‘0’ and ‘1’, of a bit. The symmetric
potential in Fig. 2a has F0 =F1. Another possibility is the asymmetric
potential in Fig. 2b, where F0 6=F1, as the mean energies and phase-
space volumes of the wells are di�erent.

Now we assume that, after any manipulation of the memory,
it always finishes the process with the same initial Hamiltonian
H(y). In this case, the only relevant states are the informational
ones and the energetics of manipulating a memory and its stored
information should be expressed only in terms of pm. In particular,
the average work to change the statistical state of a memory from
M with distribution pm to M 0 characterized by p0

m can be bound,
according to the second law (3), as

W �1F ⌘F(M 0)�F(M) (9)

which for symmetric memories, according to (8), depends only on
the change in information content,W �kT (H(M)�H(M 0)).

A celebrated particular case is Landauer’s principle, which
bounds the heat exhausted to reset (or erase) one random bit
stored in a symmetric memory40. Resetting a memory is a process
where, irrespective of the initial condition, all informational states
m are driven to a preselected, standard state, say m = 0, such
that p0

0 = 1 and all other p0
m = 0. For a symmetric memory, the

minimal work to implement this restore-to-zero operation by
equation (9) is Wreset � kTH(M), as H(M 0)= 0. For a random bit,
p0 = p1 = 1/2, we recover Landauer’s original bound, which has
been verified experimentally using an implementation of the toy
model memory in Fig. 215,41,42. For asymmetric memories, 1Freset is
not necessarily equal to �kTH(M), and the generalized Landauer
principle is43,44

Wreset �1Freset (10)

The equality is achieved if the reset is thermodynamically reversible.
This does not contradict the logical irreversibility of the reset,
which implies that the entropy H(M) of the informational states
decreases44. For finite-time erasing when we cannot saturate
equation (10), model studies have been fruitful in elucidating the
e�ciency trade-o�s45,46. Again, one can analyse this bound on the
trajectory level using an integral fluctuation theorem47.

The opposite of restore-to-zero is a process that increases
the memory’s disorder to extract work. For instance, an N -bit
symmetric memory with a low Shannon entropy can be disordered
to a new high entropy state M 0, extracting an amount of work
kT (H(M 0)�H(M)). This use of an ordered memory as ‘fuel’ was
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