

Grado en Física (curso 2024-25)

Física Nuclear		Código	800535	Curso	4°	Sem.	1º
Módulo	Física Fundamental	Materia	Estructura de la Materia	Tipo		optativo)

	Total	Teóricos	Práct./Semin.	Lab.
Créditos ECTS:	6	3.6	2.4	
Horas presenciales	45	27	11	7

Resultados del aprendizaje (según Documento de Verificación de la Titulación)

 Entender la estructura del núcleo atómico, sus propiedades básicas y ser capaz de modelizar dichas propiedades utilizando tanto modelos microscópicos como semiclásicos.
 Familiarizarse con las reacciones nucleares y las aplicaciones de la Física Nuclear.

Breve descripción de contenidos

- Propiedades y modelización de los núcleos atómicos.
- Reacciones nucleares.

Conocimientos previos necesarios

Es aconsejable haber cursado todas las asignaturas obligatorias hasta tercero del grado en Física.

Profesor/a coordinador/a	Luis Mario Fraile Prieto				EMFTEL
	Despacho	03.230.0	e-mail	Imfrai	le@ucm.es

Teoría/Prácticas - Detalle de horarios y profesorado								
Grupo	Aula	Día	Horario	Profesor	Fechas	horas	T/P	Dpto.
^	A 1 L J	40.00.40.00	Luis Mario Fraile Prieto	Todo el	26	T/P	EMFTEL	
A		J	J 12:00 -13:30	José Manuel Udías Moinelo	cuatrimestre	12	T/P	EMFTEL
B 1	NA I	15:30 – 17:00	José Manuel Udías Moinelo	Todo el	26	T/P	EMFTEL	
	1	1 M,J 1	15.30 – 17.00	Luis Mario Fraile Prieto	cuatrimestre	12	T/P	EMFTEL

T:teoría, P:práctica- Las clases de problemas se van intercalando con las de teoría según el avance del temario

Laboratorios - Detalle de horarios y profesorado							
Grupo	Lugar	sesiones	Profesor	Hora s	Dpto.		
1		11 y 18 de noviembre 9:00 – 13:00	Víctor Sánchez Tembleque Verbo	7			
2		11 y 18 de noviembre 14:00 – 17:30	Víctor Sánchez Tembleque Verbo	7			
3		12 y 26 de noviembre 9:30 – 13:00	Alejandro Ariza Carrasco	7			
4	Laboratorio de Física Atómica y Nuclear (3ª planta)	14 y 25 de noviembre 9:30 – 13:00	Víctor Sánchez Tembleque Verbo	7	EMFTEL		
5	(3 pianta)	12 y 22 de noviembre 14:00 – 17:30	Alejandro Ariza Carrasco	7			
6		13 y 22 de noviembre 9:30 – 13:00	Andrés Illana Sisón	7			
7		13 y 25 de noviembre 14:00 – 17:30	Andrés Illana Sisón	7			

Tutorías							
Grupo	Profesor	horarios	e-mail	Lugar			
A	Luis Mario Fraile Prieto	L: 10:30-12:00 J: 14:00-15:30 Para otros horarios contactar con el profesor por correo electrónico	Imfraile@ucm.es	03.230.0			
	José Manuel Udías Moinelo	L y J: 15:00-16:30	jose@nuc2.fis.ucm.es	03.227.0			
В	Luis Mario Fraile Prieto	L: 10:30-12:00 J: 14:00-15:30 Para otros horarios contactar con el profesor por correo electrónico	Imfraile@ucm.es	03.230.0			
	José Manuel Udías Moinelo	L y J: 15:00-16:30	jose@nuc2.fis.ucm.es	03.227.0			

Programa de la asignatura

TEORÍA

- 1. Interacción nucleón-nucleón: Rango, intensidad, simetrías. Sistemas de pocos nucleones: el deuterón. Dispersión nucleón-nucleón. Isoespín.
- 2. Profundización en las propiedades estáticas de los núcleos complejos. Forma, tamaño y energía de ligadura. Energías de separación. Energía de apareamiento. Espectros vibracionales y rotacionales. Espectro de partícula independiente. Momentos electromagnéticos nucleares.
- 3. Campo medio, métodos autoconsistentes y modos colectivos. Interacciones efectivas

- dependientes de la densidad. Interacción residual. Interacción de apareamiento. Aproximación Hartree-Fock-Bogoliubov. Del modelo del gas de Fermi a la teoría de Brueckner- Hartree- Fock y más allá.
- 4. Profundización en las propiedades de desintegración nucleares. Alfa, beta, gamma, conversión interna, captura electrónica. Reglas de selección. Teoría de Gamow de la desintegración alfa. Teorías de Fermi y Gamow-Teller de la desintegración beta. Teoría V-A. Transiciones multipolares eléctricas y magnéticas.
- Reacciones nucleares. Cinemática. Dispersión elástica. Potencial óptico. Reacciones de núcleo compuesto. Reacciones directas. Reacciones de transferencia de nucleones (pickup, stripping). Reacciones de intercambio de carga.
- 6. Fisión y fusión. Fisión espontánea e inducida. Fusión en el Sol. Ciclos pp y CNO. Nucleosíntesis primordial y en las estrellas. Procesos r y s.
- 7. Métodos de espectroscopia nuclear.
- 8. Aplicaciones. Reactores de fisión y fusión. Datación. Análisis de materiales. Aplicaciones en medicina: Imagen nuclear y radioterapia. Aceleradores.

PRÁCTICAS

Experiencias con desintegración alfa, beta y gamma. Detección de fotones y partículas cargadas. Espectros nucleares experimentales. Coincidencias, anticoincidencias y correlaciones angulares en la desintegración gamma. Calibración detector alfa y espectros alfa. Espectroscopio magnético, espectros beta más y beta menos. Detectores de estado sólido.

Más detalles http://nuclear.fis.ucm.es/laboratorio

Bibliografía

Básica

- · A. Obertelli, H. Sagawa, Modern Nuclear Physics. From Fundamentals to Frontiers (Springer, 2021).
- · K.S. Krane: Introductory Nuclear Physics (John Wiley and Sons, 1982).
- · K. Heyde: Basic Ideas and Concepts in Nuclear Physics. An Introductory Approach (Institute of Physics, 2002).
- · W. Greiner, J. A. Maruhn: Nuclear Models. (North-Holland Pub. co., 1978).

Complementaria

- · G.F. Knoll: Radiation Detection and Measurement (Wiley, 2000), para las prácticas.
- · P. Ring, P. Schuck: The Nuclear Many-Body Problem (Springer-Verlag, 1994).
- S.G. Nilsson, I. Ragnarsson: Shapes and Shells in Nuclear Structure (Cambridge Univ. Press, 2005).

Recursos en internet

Campus virtual

http://nuclear.fis.ucm.es/FN

Metodología

Se desarrollarán las siguientes actividades formativas:

- Lecciones de teoría donde se explicarán los principales conceptos de la materia, incluyendo ejemplos y aplicaciones.
- Clases prácticas de problemas.
- Se realizarán también sesiones de prácticas en el laboratorio de Física Nuclear.

Las lecciones de teoría utilizarán la pizarra o proyecciones con ordenador. La resolución de problemas tendrá lugar en la pizarra, aunque ocasionalmente podrán usarse proyecciones con ordenador. Además se pondrá a disposición de los estudiantes el material incluyendo las explicaciones y se dedicarán las clases en subgrupos a la resolución de dudas, "flipped classroom" y realización de ejemplos prácticos y problemas.

El material de la asignatura está disponible a través del Campus Virtual.

El profesor recibirá en su despacho a los alumnos en el horario especificado de tutorías, con objeto de resolver dudas, ampliar conceptos, etc. Es altamente recomendable la asistencia a estas tutorías para un mejor aprovechamiento del curso.

Evaluación

Realización de exámenes

Peso:

70%

El examen tendrá una parte de cuestiones teórico-prácticas y otra parte de problemas (de nivel similar a los resueltos en clase).

Otras actividades de evaluación

Peso:

30%

Otras actividades de evaluación tales como seguimiento de una colección de problemas, controles, trabajos entregables, realización de las prácticas e informes de laboratorio.

Calificación final

Para superar la asignatura se requiere haber realizado y superado las prácticas obligatorias.

La calificación final será NFinal = Max(0.7 NExamen+0.3 NOtrasActiv, NExamen), donde NExamen y NOtrasActiv son (en una escala 0 - 10) las calificaciones obtenidas en los dos apartados anteriores. Se requiere una calificación mínima de NExamen = 4 para y de NFinal = 5 para superar la asignatura.

La calificación de la convocatoria extraordinaria se obtendrá siguiendo el mismo procedimiento de evaluación.