

Grado en Física (curso 2024-25)

Campos Cuánticos		Código	800540	Curso	4°	Sem.	1°
Módulo	Física Fundamental	Materia	Física Teórica	Tipo	optativo)

	Total	Teóricos	Práct./Semin./Lab.
Créditos ECTS:	6	4	2
Horas presenciales	45	30	15

Resultados del aprendizaje (según Documento de Verificación de la Titulación)

Conocer la cuantificación de los campos relativistas.

Breve descripción de contenidos

Teoría cuántica de campos relativista. Cuantización canónica del campo electromagnético y campos escalares y ferniónicos. Electrodinámica cuántica.

Conocimientos previos necesarios

Mecánica Clásica y Mecánica Cuántica. Se recomienda cursar simultáneamente la asignatura de Electrodinámica Clásica. La asignatura Simetrías y Grupos en Física también puede resultar muy útil.

Profesor/a	Antonio Dobado González				Dpto.	FT
coordinador/a	Despacho	03.231.0	e-mail	dobad	o@fis.ucn	n.es

Teoría/Prácticas - Detalle de horarios y profesorado								
Grupo	Aula	Día	Horario	Profesor	Fechas	horas	T/P	Dpto.
Α	1	L, J	10:30 – 12:00	Antonio Dobado González	Indistintamente	45	T/P	FT
В	11	M, J	17:00 – 18:30	Antonio Dobado González	Indistintamente	45	T/P	FT

Tutorías						
Grupo	Profesor	horarios	e-mail	Lugar		
Α	Antonio Dobado González	M,J: 14:00 - 174:00	dobado@fis.ucm.es	03.231.0		
В	Antonio Dobado González	M,J: 14:00 -17:00	dobado@fis.ucm.es	03.231.0		

Programa de la asignatura

- Tema 1: Ecuaciones de Klein-Gordon y de Dirac.
- Tema 2: Teoría clásica de campos.
- Tema 3: Cuantización canónica del campo escalar libre.
- Tema 4: Cuantización canónica del campo fermiónico libre.
- Tema 5: Procesos de interacción: matriz S, secciones eficaces y vidas medias.
- Tema 6: Cuantización del campo electromagnético libre.
- Tema 7: Electrodinámica cuántica.

Bibliografía

- M. Maggiore. A Modern Introduction to Quantum Field Theory, Oxford University Press, 2005.
- M.E. Peskin, D.V. Schroeder. An Introduction to Quantum Field Theory. Addison Wesley, 1995.
- C. Itzykson and J.B. Zuber. Quantum Field Theory. McGraw-Hill, 1980.
- S. Weinberg. The Quantum Theory of Fields, vols.I, II. Cambridge University Press 1994, 1995.
- A. Zee. Quantum Field Theory in a Nutshell. Princeton University Press. 2010.
- V. Radovanovic, Problem Book in Quantum Field Theory, Springer, 2006.
- L. Álvarez- Gaumé, M. A. Vázquez-Mozo. An Invitation to Quantum Field Theory. Springer Verlag. 2012.
- D. McMahon. Quantum Field Theory Demystified. Mc Graw Hill. 2008.
- K. Huang. Quantum Field Theory. John Wiley & Sons. 1998.

Recursos en internet

Se podrá utilizar material de otras instituciones de prestigio como vídeos y notas de acceso libre.

Metodología

Se impartirán clases, en la pizarra, en las que se explicarán y discutirán los diversos temas del programa. Los conceptos y técnicas introducidos en la explicación de los temas se ilustrarán con ejemplos y problemas que se resolverán en clase. Se estimulará la discusión, individual y en grupo, con los alumnos de todos los conceptos y técnicas introducidos en clase.

Evaluación					
Realización de exámenes	Peso:	70%			

Se realizará un examen final escrito. El examen constará de cuestiones teórico-prácticas y/o problemas (de nivel similar a los resueltos en clase). Es imprescindible superar el examen para aprobar la asignatura.

Otras actividades de evaluación	Peso:	30%

Otras actividades de evaluación tales como seguimiento de una colección de problemas, controles o trabajos entregables.

Calificación final

La calificación final será el máximo entre estas dos opciones:

a) 100% de la nota del examen final

b) 70% de la nota del examen final y 30% de otras actividades.