A Quantum Interior-Point Predictor-Corrector Algorithm for Linear Programming P. A. M. Casares^{@*} M. A. Martin-Delgado^{*}

[@]pabloamo@ucm.es, *Facultad de Ciencias Físicas, Universidad Complutense Madrid

Linear Programming

We want to solve the two equivalent (dual) problems:

$$\min c^T x; \qquad | \quad Ax \ge b, \quad x \ge 0.$$
(1)

$$\max b^T y; \qquad | \quad A^T y \le c.$$
(2)

Important in many areas such as planning, logistics, economics... We have the two main methods:

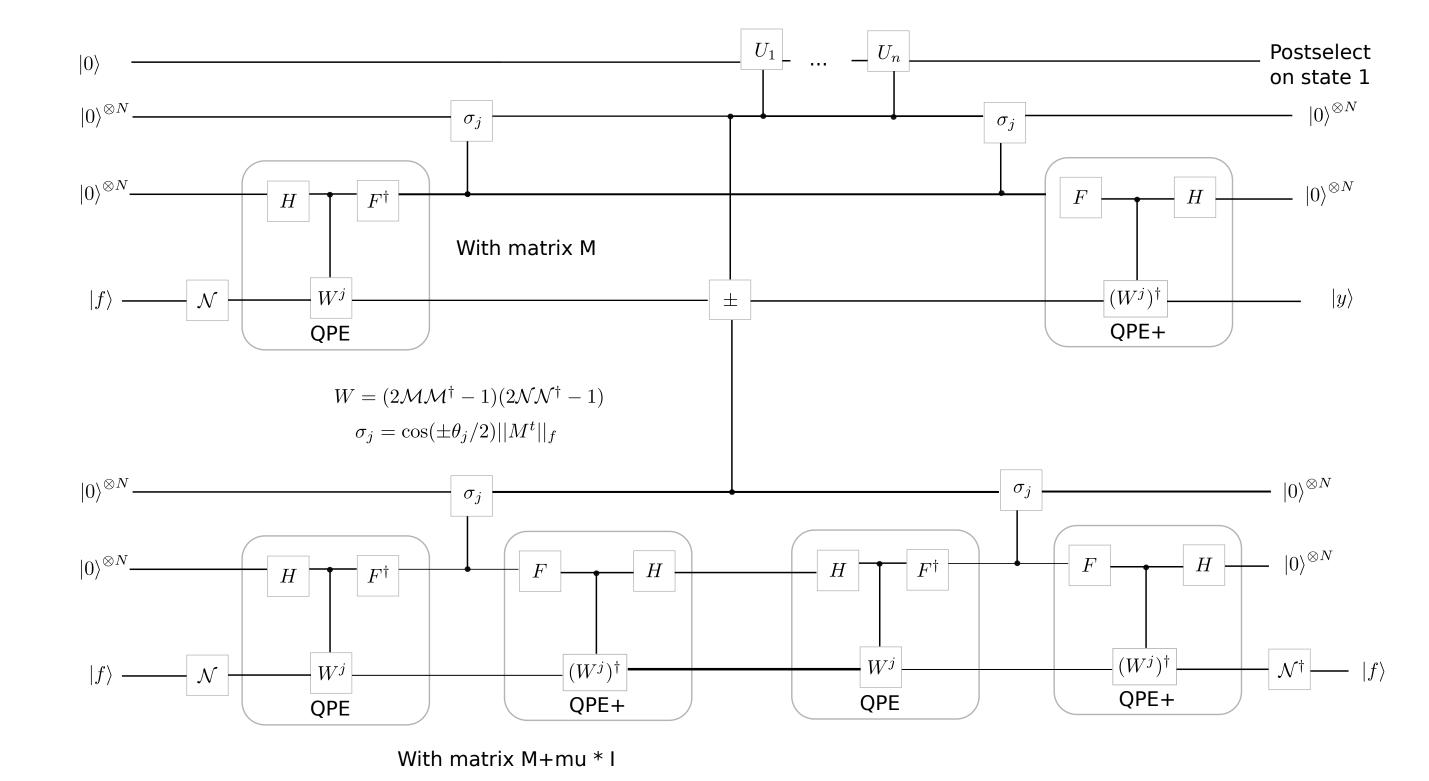


Figure 1: Simplex method (left) vs Interior Point (IP) Method (right).

Simplex method is simpler but may have exponential cost on the number of variables n.

Predictor-Corrector algorithm [1]

Objective: Combine (1) and (2) into a single problem. Define

$$\bar{b} := b - Ax^0, \qquad \bar{c} := c - A^T y^0 - s^0, \qquad \bar{z} := c^T x^0 + 1 - b^T y^0.$$
 (3)

Solve the following self-dual problem: $\min \theta$ given

$$\begin{aligned} +A x & -b \tau + \overline{b} \theta &= 0 \\ -A^T y & +c \tau - \overline{c} \theta &\ge 0 \\ +b^T y & -c^T x & + \overline{z} \theta &\ge 0 \\ -\overline{b}^T y & +\overline{c}^T x - \overline{z} \tau &= -(x^0)^T s^0 - 1 \end{aligned}$$

To do that consider $v^t = (y^t, x^t, \tau^t, \theta^t, s^t, k^t)$ and define the central path

 $||(X_s)|$ $x^Ts + \tau k$

Figure 2: Circuit of the Dense version of the HHL algorithm.

Encoding

We need a fast encoding system. We prepare a classical data base that can be used to prepare states fast and also perform $U_{\mathcal{M}}$ and $U_{\mathcal{N}}$ from the Dense Quantum Linear System Algorithm:

Theorem 2 [4]: Let $M \in \mathbb{R}^{n' \times n'}$ be a matrix. If w is the number of nonzero entries, there is a quantum accessible data structure of size $O(w \log^2(n'^2))$, which takes time $O(\log(n'^2))$ to store or update a single entry. Once the data structure is set up, there are quantum algorithms that can perform the following maps to precision ϵ^{-1} in time $O(\operatorname{\textit{poly}}\log(n'^2/\epsilon))$:

$$U_{\mathcal{M}}:|i\rangle|0\rangle \to \frac{1}{||M_{i\cdot}||} \sum_{j} M_{ij}|ij\rangle; \qquad U_{\mathcal{N}}:|0\rangle|j\rangle \to \frac{1}{||M||_F} \sum_{i} ||M_{i\cdot}|||ij\rangle;$$
(9)

where $||M_{i}||$ is the l_2 -norm of row i of M. This means in particular that given a vector f in this data structure, we can prepare an ϵ approximation of it, $1/||v||_2 \sum_i v_i |i\rangle$, in time $O(\text{poly}\log(n'/\epsilon))$.

Readout

(4)

(6)

$$\mathcal{N}(\beta) = \{(y, x, \tau, \theta, s, k) \in \mathcal{F}_h^0 : \left| \left| \begin{pmatrix} \mathbf{1} \\ \tau k \end{pmatrix} - \mu \mathbf{1}_{(n+1)\times 1} \right| \right| \le \beta \mu \text{ where } \mu = \frac{w + \tau m}{n+1} \}.$$
(5)

Then, iteratively solve:

- 1. Predictor step: Solve (6) with $\gamma^t = 0$. Then find (bisection search) max δ such that $v^{t+1} = v^t + \delta d_{v^t} \in \mathcal{N}(1/2)$ and sum it.
- 2. Corrector step: Solve (6) with $\gamma^t = 1$ and $v^{t+1} = v^t + d_{v^t} \in \mathcal{N}(1/4)$.

Linear System of Equations Algorithm [2]

A modification of the HHL algorithm for dense system of equations:

Theorem 1 [2]: Let M be an $n' \times n'$ Hermitian matrix (if the matrix is not Hermitian it can be included as a submatrix of a Hermitian one) with condition number κ and Frobenius norm $||M||_F = \sqrt{\sum_{ij} M_{ij}^2}$. Let f be an n'-dimensional unit vector, and assume that there is an oracle \mathcal{P}_f which produces the state $|f\rangle$. Let also M have spectral decomposition $M = \sum_i \lambda_i u_i u_i^{\dagger}$ encoded in a quantum accessible data structure (see theorem 2). Let

$$d_{v} = M^{-1}f \qquad |d\rangle = \frac{d_{v}}{d} \qquad (7)$$

To perform the readout of the linear system of equations we use Amplitude Estimation [5]. However, AE does not give sign, but only absolute value. To estimate relative sign between entries of the solution $|d\rangle$, calculate $|\langle d|R_{ij}\rangle|^2$ with $|R_{ij}\rangle := C_{ij}(|d_i| |j\rangle + |d_j| |i\rangle).$

- 1. If same sign for entries i and $j \to \text{The result}$ is $|\langle d|R_{ij}\rangle|^2 = 2C_{ij}d_id_j$.
- 2. If opposite sign for entries i and $j \to \text{The result}$ is $|\langle d|R_{ij}\rangle|^2 = 0$.

Error

The error in the Dense Quantum Linear System Algorithm is greater than for its classical counterpart: how do we ensure that we do not get out of $\mathcal{N}(1/4)$ in the corrector step? The answer is that if we get ϵ' out of $\mathcal{N}(1/4)$ due to error, we then perform an ϵ' -size step of gradient descent to go back in. That solves the problem.

Conclusion

Algorithms for Linear Programming	Work complexity
Multiplicative weights	$O(\left(\sqrt{n}\left(\frac{Rr}{\epsilon}\right) + \sqrt{m}\right)\left(\frac{Rr}{\epsilon}\right)^4)$
Another Quantum Interior Point Algorithm	$O(L\sqrt{n}(n+m)\muar\kappa^3\epsilon^{-2});$
Pred-Corr. + Conjugate Gradient	$O(L\sqrt{n}(n+m)^2\bar{\kappa}\log(\epsilon^{-1}))$
Pred-Corr. + Cholesky decomposition	$O(L\sqrt{n}(n+m)^3)$
Pred-Corr. $+$ Optimal exact	$O(L\sqrt{n}(n+m)^{2.737})$
Pred-Corr. + QLSA (This algorithm)	$O(L\sqrt{n}(n+m)\overline{ M _F}ar{\kappa}^2\epsilon^{-2})$;

References

- [1] Y. Ye, M. J. Todd, and S. Mizuno, "An $o(\sqrt{nl})$ -iteration homogeneous and self-dual linear programming algorithm," Mathematics of Operations Research, vol. 19, no. 1, pp. 53–67, 1994.
- [2] L. Wossnig, Z. Zhao, and A. Prakash, "Quantum linear system algorithm for dense matrices," *Physical review*

-IVI J, |u| -(')

Then, [2] constructs an algorithm relying on Quantum Singular Value Estimation [3] that outputs the state $|d\rangle$ up to precision ϵ^{-1} , with probability of failure $1 - 1/\operatorname{poly}(n')$, and has overall time complexity

> $O(||M||_F(\kappa^2/\epsilon) \operatorname{poly}\log(n')).$ (8)

letters, vol. 120, no. 5, p. 050502, 2018.

- [3] I. Kerenidis and A. Prakash, "Quantum recommendation systems," in *Proceedings of the 8th Innovations in The*oretical Computer Science Conference, 2017.
- [4] S. Chakraborty, A. Gilyén, and S. Jeffery, "The power of block-encoded matrix powers: improved regression techniques via faster hamiltonian simulation," arXiv preprint arXiv:1804.01973, 2018.
- [5] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, "Quantum amplitude amplification and estimation," *Contemporary* Mathematics, vol. 305, pp. 53–74, 2002.

Read more @ ArXiv: 1902.06749

PhDay 2019, Facultad de Ciencias Físicas, UCM