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Linear Programming
We want to solve the two equivalent (dual) problems:

min cTx; | Ax ≥ b, x ≥ 0. (1)

max bTy; | ATy ≤ c. (2)

Important in many areas such as planning, logistics, economics... We have the two main methods:

Figure 1: Simplex method (left) vs Interior Point (IP) Method (right).

Simplex method is simpler but may have exponential cost on the number of variables n.

Predictor-Corrector algorithm [1]
Objective: Combine (1) and (2) into a single problem. Define

b̄ := b− Ax0, c̄ := c− ATy0 − s0, z̄ := cTx0 + 1− bTy0. (3)

Solve the following self-dual problem: min θ given

+Ax −b τ +b̄ θ = 0
−AT y +c τ −c̄ θ ≥ 0
+bT y −cT x +z̄ θ ≥ 0
−b̄T y +c̄T x −z̄ τ = −(x0)Ts0 − 1

(4)

To do that consider vt = (yt, xt, τ t, θt, st, kt) and define the central path

N (β) = {(y, x, τ, θ, s, k) ∈ F 0
h :
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Then, iteratively solve:

m n 1 1 n 1



m 0 A −b b̄ 0 0
n −AT 0 c −c̄ −1 0
1 bT −cT 0 z̄ 0 −1
1 −b̄T c̄T −z̄ 0 0 0
n 0 St 0 0 X t 0
1 0 0 kt 0 0 τ t
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γµt1n×1 −X tst

γµt − τ tkt

. (6)

1. Predictor step: Solve (6) with γt = 0. Then find (bisection search) max δ such that vt+1 = vt + δdvt ∈ N (1/2)
and sum it.

2. Corrector step: Solve (6) with γt = 1 and vt+1 = vt + dvt ∈ N (1/4).

Linear System of Equations Algorithm [2]
A modification of the HHL algorithm for dense system of equations:

Theorem 1 [2]: Let M be an n′ × n′ Hermitian matrix (if the matrix is not Hermitian it can be included as
a submatrix of a Hermitian one) with condition number κ and Frobenius norm ||M ||F =

√∑
ijM

2
ij. Let f be an

n′-dimensional unit vector, and assume that there is an oracle Pf which produces the state |f〉. Let also M have
spectral decomposition M =

∑
i λiuiu

†
i encoded in a quantum accessible data structure (see theorem 2). Let

dv = M−1f, |d〉 = dv
||dv||

. (7)

Then, [2] constructs an algorithm relying on Quantum Singular Value Estimation [3] that outputs the state |d〉 up to
precision ε−1, with probability of failure 1− 1/poly(n′), and has overall time complexity

O(||M ||F (κ2/ε) poly log(n′)). (8)

QPE QPE+

...

QPE QPE+ QPE QPE+

Postselect
on state 1

With matrix M

With matrix M+mu * I

Figure 2: Circuit of the Dense version of the HHL algorithm.

Encoding
We need a fast encoding system. We prepare a classical data base that can be used to prepare states fast and also
perform UM and UN from the Dense Quantum Linear System Algorithm:

Theorem 2 [4]: Let M ∈ Rn′×n′ be a matrix. If w is the number of nonzero entries, there is a quantum acces-
sible data structure of size O(w log2(n′2)), which takes time O(log(n′2)) to store or update a single entry. Once the
data structure is set up, there are quantum algorithms that can perform the following maps to precision ε−1 in time
O(poly log(n′2/ε)):

UM : |i〉 |0〉 → 1
||Mi·||

∑
j

Mij |ij〉 ; UN : |0〉 |j〉 → 1
||M ||F

∑
i

||Mi·|| |ij〉 ; (9)

where ||Mi·|| is the l2−norm of row i of M . This means in particular that given a vector f in this data structure, we
can prepare an ε approximation of it, 1/||v||2

∑
i vi |i〉, in time O(poly log(n′/ε)).

Readout
To perform the readout of the linear system of equations we use Amplitude Estimation [5]. However, AE does not give
sign, but only absolute value. To estimate relative sign between entries of the solution |d〉, calculate | 〈d|Rij〉 |2 with
|Rij〉 := Cij(|di| |j〉 + |dj| |i〉).
1. If same sign for entries i and j → The result is | 〈d|Rij〉 |2 = 2Cijdidj.
2. If opposite sign for entries i and j → The result is | 〈d|Rij〉 |2 = 0.

Error
The error in the Dense Quantum Linear System Algorithm is greater than for its classical counterpart: how do we ensure
that we do not get out of N (1/4) in the corrector step? The answer is that if we get ε′ out of N (1/4) due to error,
we then perform an ε′-size step of gradient descent to go back in. That solves the problem.

Conclusion
Algorithms for Linear Programming Work complexity

Multiplicative weights O((
√
n
(
Rr
ε

)
+
√
m)
(
Rr
ε

)4)
Another Quantum Interior Point Algorithm O(L

√
n(n + m)µκ̄3ε−2);

Pred-Corr. + Conjugate Gradient O(L
√
n(n + m)2κ̄ log(ε−1))

Pred-Corr. + Cholesky decomposition O(L
√
n(n + m)3)

Pred-Corr. + Optimal exact O(L
√
n(n + m)2.737)

Pred-Corr. + QLSA (This algorithm) O(L
√
n(n + m)||M ||F κ̄2ε−2) ;
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