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Motivation
Transparent conducting oxides (TCO’s), which exhibit both high electrical conductivity and high optical transparency in visible light, are
necessary for a variety of optoelectronic application. Not only binary but also ternary oxides have been explored as TCO materials [1],
being Zn2GeO4 with a wide-bandgap (4.7 eV) one of the most appealing.

Crystal Structure Native Defects

interstitial atoms. This configuration made Zn2GeO4 a promising material for
application in metal-ion batteries as a high-capacity anode material [3].

properties or ionic transport, which is very important for batteries. The native
defects in Zn2GeO4 are oxygen vacancies and zinc interstitials, with a donor
character, and zinc and germanium vacancies as acceptors. They are responsible
for the luminescence spectra observed in Zn2GeO4 [2].

6.07389 Å

GeO4

ZnO4

Synthesis
Compacted Mixture Treatment

ZnO + Ge + C  (2:1:2 wt.%) 800°C, 8h, Ar 1,5 l/min 

Sn

Mg

Li

Doped

Single step thermal evaporation

Experimental 
Results

6 mm

In

Out

𝑛 = 𝐴 +
𝐵

𝜆2

𝜆𝐹𝑃 =
𝑛𝐿𝐹𝑃
𝑁

Its luminescence is about 40% higher than the
ZnO based phosphors.

An analysis of the optical resonances, permit
determine the refractive index of the Zn2GeO4.

Resonant cavities

n = Refractive Index
LFP = Length of th optical path
N = Mode number

Fabry-Perot resonance condition 
The refractive index adjusts perfectly to the Cauchy’s 
expression:

This high value for the
refractive index permit
the Zn2GeO4 microrods to
act as a waveguides:
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The different behavior of the Eg(4) mode (related to the Zni [2])
between undoped and Mg doped samples suggests that some Mg
ions could be sited at the center of rings as an interstitial impurity
[3], which could be interesting for metal-ion batteries
applications.

Mg doped microwire shows persistent photoluminescence in the UV
region not observed in undoped samples. We suggest that this feature is
due to the presence of Mg in interstitial position [3].
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Its crystalline structure consists
of corner-shared ZnO4 and GeO4
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Native defects usually play a
fundamental role in the physical
properties in semiconducting oxides,
e.g. optical properties, photocatalytic
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