Influence of water models on AQP1
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In this work we propose that the choice of the water model might influence the predicted transport properties of aguaporins [1].

We will focus on newer water models, such as TIP4P/2005 [2] and OPC [3], known to reproduce and to predict the values of a huge range of thermodynamics
properties [1].

We have carried out several simulations for AQP1 in combination with TIP3P [4], TIPA4P/2005 and OPC as the water potential. We have calculated the water flux
through the channel, the water molecule orientation into the channel and the water dipole moment for the three systems.

Our preliminary results for all systems reproduce the molecular mechanism described by Tajkhorshid et al. [5].

However, the number of water molecules crossing the channel depends on the water model. The thermodynamic properties of the water potential in bulk are
extremely different, thus modifying the protein behaviour.
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Molecular Dynamics Simulation

We have carried out several molecular dynamics simulations using GROMACS 2016.4 software
package [6]. The force field used to simulate the protein is CHARMM-36, GROMOS-53A6 for lipids,
and the water was modeled with TIP3P, OPC, and TIP4P/2005 force fields. We performed
simulations In the NpT ensemble, at 298 K and 1 bar. Long-range electrostatic interactions were
treated using the Particle Ewald method [7].
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CONCLUSIONS

In this work, we demonstrate that water model choice plays a key role to describe properly the properties of AQP-1.

In combination with CHARMM (to simulate AQP-1), we consider 3 water force-fields (the commonly used TIP3P, TIP4P/2005 and OPC).

We find out that the peculiar mechanism of water through AQP-1 is recovered with all water water models.

However, when computing the water flux and the diffusion permeabillity, we conclude that the results obtained with TIP4P/2005 and OPC are in better agreement with experiments.
The main reason being the different bulk diffusion coefficient of each of these models.

In order to shed more light on this result, our last goal will be computing the axial diffusion coefficient of water through the AQP-1 channel.
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