PhDay Físicas 2018

Interplay between two type II superconductors at the nanoscale

V. Rollano¹, J. del Valle², A. Gomez³, A. Munoz-Noval⁴, J. L. Prieto⁵, E. Navarro⁴, E. M. Gonzalez^{1,4}, I. K. Schuller², J. L. Vicent^{1,4}

¹ IMDEA-Nanociencia, Cantoblanco, 28049 Madrid, Spain. ² Department of Physics, Center of Advance Nanoscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ³ Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain. ⁴ Departamento Física de Materiales, Facultad Ciencias Físicas, Universidad Complutense, 28040 Madrid, Spain.

⁵ ISOM-ETSIT, Universidad Politécnica de Madrid – 28040 Madrid, Spain

ESCUELA DE DOCTORADO

TYPE II SUPERCONDUCTORS: COMMENSURABILITY EFFECT

Sputtering

Si substrate

VORTEX MOTION

ELECTRIC FIELD PERPENDICULAR TO VORTEX MOVEMENT

 $\vec{\mathbf{E}} = \frac{1}{c} (\vec{\mathbf{B}} \mathbf{x} \vec{\mathbf{v}})$

 $\overrightarrow{\mathbf{F}_{\mathrm{L}}} = \frac{1}{c} \left(\overrightarrow{\mathbf{J}} \times \overrightarrow{\mathbf{\Phi}_{\mathrm{0}}} \right)$

4.15 4.20 4.25 4.10 10 T(K) **T (K)**

Tc (Nb triangles) > Tc (Hybrid Sample)

TRANSPORT MEASUREMENTS

