Background-independent measurement of θ_{13} with the Double Chooz experiment

Diana Navas

on behalf of the Double Chooz Collaboration

THE DOUBLE CHOOZ EXPERIMENT

In reactor experiments, the determination of the θ_{13} mixing angle is extracted via the survival probability of $\overline{\nu}_e$:

THE REACTOR RATE MODULATION (RRM) APPROACH

 θ_{13} and cosmogenic BG rates (BG) are determined simultaneously by comparing the observed \overline{v}_e candidates rate (R^{obs}) with the expected one (R^{exp}) for different reactor power conditions:

 $R^{obs} = BG + R^{exp} = BG + (1 - sin^2(2\theta_{13})\eta_{osc})R^v$

lure in

· allows a

BG from intercept

100 120 140 Expected rate (day⁻¹)

MULTI-DETECTOR ANALYSIS

- 455 days FD-I (single detector)
- 363 days FD-II (multi-detectors)
- 258 days ND (multi-detectors)

$\overline{\nu}_e$ are detected via the INVERSE β decay (IBD) $\overline{\nu}_e + p \rightarrow e^+ + n$

time

measurement of the BG During 2-Off period, a few β -decays in the reactor core: **Residual** ν emitted

Systematics Uncertainties

	Detector	Parameter	Uncertainty	Correlated
Detection efficiency	FD	$\epsilon^{ extsf{FD}}$	σ_{det}^{FD} = 0.39%	No
	ND	ϵ^{ND}	σ_{det}^{ND} = 0.22%	No
Reactor flux	FDI	$lpha_{B1}^{FDI}\omega_{B1}^{FDI}$, $lpha_{B2}^{FDI}\omega_{B2}^{FDI}$	$\sigma_{\rm R}^{\rm FDI}$ = 0.91%	No
	FDII	$\alpha_{B1}\omega_{B1}^{FDII}$, $\alpha_{B2}\omega_{B2}^{FDII}$	σ_{R} = 0.91%	No
	ND	$\alpha_{B1}\omega_{B1}^{ND}$, $\alpha_{B2}\omega_{B2}^{ND}$	$\sigma_R = 0.91\%$	No
Residual v rate in FDI in the 2-Off period $\alpha_v = 0.584 \pm 0.175 \text{ day}^{-1}$				

 $OVer all normalization and correlated errors included in <math>\eta_{norm}$ (σ_{norm} =1.4%), dominated by the constraint imposed by Bugey4 data

OSCILLATION AND COSMOGENIC BG FIT

Rate-only fit that relies on a χ^2 minimization:

$$\chi^{2} = \sum_{i} \chi_{i}^{2} + \chi_{FD-off}^{2} + \chi_{BG}^{2} + \chi_{pen}^{2} + \chi_{norm}^{2} \qquad \sum_{i} \chi_{i}^{2} = \chi_{FDI}^{2} + \chi_{FDII}^{2} + \chi_{ND}^{2}$$
$$\chi_{i}^{2} = \left(\frac{1}{\sigma_{stat}^{i}}\right)^{2} \left[R_{obs}^{i} - R_{exp}^{i}\left(1 + \eta_{norm} + \sum_{r=B1,B2} (\omega_{r}^{i}\alpha_{r}^{i}) + \epsilon^{i}\right) - BG^{i}\right]$$

 $\chi^2_{FD-Off} = 2 \left(N^{obs} \ln \frac{N^{obs}}{BG_{FD} + N^{exp} [1 + \epsilon^{FD} + \alpha^{\nu}]} + BG_{FD} + N^{exp} [1 + \epsilon^{FD} + \alpha^{\nu}] - N^{obs} \right)$

2 WAYS OF PERFORMING RRM FIT:

- **1.** Constrained background: priori knowledge of BG is required, θ_{13} determined with high precision
- 2. Unconstrained background: measurement of θ_{13} independent of the BG model and best fit values of the BG can be confronted to the BG model

BACKGROUND SOURCES:

fit)

COSMOGENIC BACKGROUND: FAST NEUTRONS + COSMOGENIC ISOTOPES (LI⁹)

RRM OSCILLATION FIT RESULTS

a. RRM fit WITH background constraint

b. RRM fit wITHOUT background constraint

- BG treated as free parameter in the fit
- $\sin^2(2\theta_{13}) = 0.090 \pm 0.023$
- θ_{13} independent of the BG model
- $BG_{FD} = 4.0 \pm 0.7$, $BG_{ND} = 30.7 \pm 5.0 \text{ events}/day$ (FN+Li⁹) consistent within 10 with the BG model

- RRM fit: 1.0-8.5 MeV energy window • Li⁹ extracted from candidates in
 - the 8.5-12.0 MeV window:
 - Subtract FN estimation in the 8.5-20.0 MeV range
 - Remaining candidates in the 8.5–12 MeV provide the Li⁹ rate
 - Extrapolate rate to 1.0-8.5 MeV according to shape spectrum

- The constraint on the total BG rate given by the 2-Off data improves precision of θ_{13}
- c. Crosscheck of the Rate+Shape fit
 - Same energy window (1.0-20.0 MeV) assumed
 - $\sin^2(2\theta_{13}) = 0.110 \pm 0.018$
 - R+S fit: $\sin^2(2\theta_{13}) = 0.105 \pm 0.014$

- d. Flux normalization consistent with expectation: $\eta_{norm} = -0.1 \pm 0.7$ %
 - Fit compatible with flux reactor model
 - σ_{norm} is reduced from 1.4 % to 0.7 % thanks to relative comparison FD to ND

ESCUELA DE DOCTORADO

