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ABSTRACT: We show that it is possible to recover information from the initial state of a quantum system after it has reached thermal equilibrium providing the 
process is done slowly enough. To do so, we perform a numerical simulation of a closed cycle bringing the system very slowly to a chaotic region where we let it 
reach thermal equilibrium and where the erasure of information would be expected. Next, we bring the system back to where it started very slowly. We obtain that 
the average expected value of macroscopic observables after the whole process depends on the initial conditions, therefore allowing the recovery of information 
about the initial state. We simulate the process using the Hamiltonian of the Dicke model through two different procedures, obtaining the same results.
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-A system is said to be chaotic if a small perturbation of the initial conditions leads to 
completely different trajectories.

-This has been proposed to be the foundation of ergodicity, which is the basic 
requirement that Classical Statistical Mechanics needs to calculate the time average 
values of any physical observable O without knowing the details of the movement of 
each one of its particles [2]:

-In Quantum Statistical Mechanics  we have a radically different situation. An initial 
state,                        , evolves following the Schrödinger equation:                                  . This 
allows us to calculate the time-averaged expectation value of any physical observable Ô: 

-This depends on the initial condition. To solve this dependency the Eigenstate 
Thermalization Hypothesis establishes that Eq. (2) is equivalent to the microcanonical 
average at energy E:

-This process of ‘erasure’ of initial conditions is called thermalization. Then, the previous 
discussion can be rephrased as the following statement:

Classic systems thermalize because they erase their initial condition. Quantum systems 
thermalize because their initial condition doesn’t matter.

-Here we will show that there are some situations where this behavior leads to shocking 
conclusions. 
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4. Conclusions

-It is possible to recover the original information stored in a quantum system after it has reached thermal equilibrium.
-We suggest this mechanism to lead the system into an integrable region slowly enough and measure thermodynamics quantities.
-This model can be experimentally reproduced so these results can be tested.
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6. Aknowledgements

-We do two different simulations of a closed thermodynamic cycle: a succession of tiny 
quenches and a numerical resolution of the time-dependent Schrödinger equation. 

-Both are done very slowly to guarantee adiabaticity and minimum energy dissipation.

-The model we simulate is described by the Dicke Hamiltonian,

-The coupling parameter λ represents the strength of the interaction between the 
atoms (SU(2) algebra) and the photons (a†a), the constant ω is the frequency of the 
photons and ω

o
 is the energy gap between the two atoms:

-This model shows chaos, excited-state phase transitions, band-structure [1], constants 
of motion [3], and avoided crossing of the energy levels and it is already being used in 
experimental research [4]. 
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We can clearly see that the information stored in the system has been preserved after the whole process, 
therefore allowing us to recover the original information of a system after it has reached thermal equilibrium.

Figure 1: Number of photons at each stage of the cycle λ
i 
=2.2 → λ

f
=1 → λ

i
=2.2 

-Red dashed line: microcanonical ensemble, using Eq. (3). 

-Blue squared line: first half of the cycle (starting at the integrable region), using Eq. (2).

-Green exes line: second half of the cycle (return process) after letting the previous 
state (blue line) relax and reach thermal equilibrium, using Eq. (2).   
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Figure 2: Energy is not dissipated at all during the process.

These graphs were obtained with the tiny-quenches procedure. 
Further research is yet being done with the other procedure 
(numerically solving the time-dependent Schrödinger equation), 
but so far we have obtained the same results.
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