

Hexagonal MoO_3 as a multi-functional material for energy storage, optoelectronics and photocatalytic applications

P. Almodóvar ^{1,*}, M. López ², C. Díaz – Guerra ¹, J. Ramírez Castellanos ², J.M. González Calbet ², K. Lorenz ³, M. Peres ³, S. Suárez ⁴, B. Sánchez ⁴

¹ Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain.
 ² Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
 ³ Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, Lisboa, Portugal.
 ⁴ FOTOAIR – CIEMAT, División de Energías Renovables. Madrid, Spain.

INTRODUCTION

BACKGROUND

Molybdenum oxides are considered **exceptionally functional and adaptable optical and electronic oxides** [1-2]. Known for almost one century and still a source of findings, hexagonal MoO_3 (h- MoO_3) is a metastable material which structure and physicochemical properties are still not well known [3].

In this work we investigate

Optical activation of EU ions implanted in h-MoO₃ can be effectively achieved by **laser irradiation**. Raman and PL mappings reveal that Eu^{3+} **Iuminescence** emission is triggered by a h-MoO₃ to α -MoO₃ and Mo₄O₁₁ **phase transformation** (P. Almodóvar et al. Appl. Phys. Lett. 113 (2018) 031902; CrystEngComm 20 (2018) 4954)

[1] I. Alves de Castro, R. Shankar Datta, J. Zhen Ou, A. Castellanos-Gómez, S. Sriram, T. Daeneke and K. Kalantar-zadeh, Adv. Mater, **29** (2017) 1701619.

[2] P. Almodóvar, C. Díaz-Guerra, J. Ramírez-Castellanos, J. M. González-Calbet, M. Peres, and K. Lorenz, Appl. Phys. Lett. **113** (2018) 031902.

[3] H.-J. Lunk, H. Hartl, M.A. Hartl, M.J.G. Fait, I.G. Shenderovich, M. Feist et al., Inorg. Chem. 49 (2010) 9400.

*e-mail: palmodov@ucm.es

Increased **anode stability** as well as significantly improved **photocatalytic activity**, as compared to as-grown $h-MoO_3$.

CONCLUSIONS

Potential applications in diverse fields of undoped and doped h-MoO₃ microrods and nanoparticles and their composites with GO have been proven.

- ✓ Energy Storage → h-MoO₃@GO and h-MoO₃ nanoparticles.
 ✓ Photocatalytic activity → Ag-doped h-MoO₃ and h-MoO₃ nanoparticles.
- ✓ Optoelectronics → Eu-implanted h-MoO₃ + laser irradiation.