Electron capture of 8B into the highly excited states of 8Be

S. Vinals I Onsér*, for the MAGISOL Collaboration(1,2,3,4)

8B is very important in astrophysics as it is the only source of solar neutrinos above 2 MeV. Predominantly, it is 8B decay followed by the fragmentation into 2p particles through 3.03 MeV state and, less probably, through the 11.4 MeV state. These states are broad and produce a continuous spectrum as seen in the left figure.

The decay of this nucleus is further interesting in nuclear structure because 8B is the only confirmed proton halo nucleus in the ground state [1]. Our interest lies in determining the branching ratios and the properties of the 2+ doublet at 16.6 and 16.9 MeV populated via electron capture (EC) and 8B. This doublet has high isospin mixing [2]. Also, we want to detect the so far unobserved EC delayed proton emission via the 17.640 MeV state, which has a theoretical branching ratio of 2.3×10−6 [3].

Experimental set-up

We used a set of 4 particle-telescopes formed by 1 double sided silicon stripped detector (DSSD) plus 1 thicker Si-detector. Also, another DSSD on the bottom to maximize the B detection.

The center of this setup is the catcher of carbon foil of 31μg/cm² where is implanted the 8B beam. This is surrounded by the particle-telescopes to optimize the detection. They are put face to face with the same thickness to detect the α-α coincidences at 180°.

The thickness of the detectors has been fixed to stop all the α-particles of the 8Be fragmentation (64μm) and to have good resolution at low energies (40μm).

Data analysis and preliminary results

Searching for the proton - Cleaning the low energy part of the spectrum

When the 17.6 MeV state is populated by EC, a 333keV proton in coincidence with a non-detectable X-ray is emitted and remains a 3 Li nucleus.

Due to the extremely low branching ratio (2.3×10−6) of the emission of the proton, we have to clean the low energy part of all possible contaminants.

As the main activity is 8Be(αα) (multiplicity 3), by choosing multiplicity 1, i.e., hit in only 1 of the detectors, a reduction of a factor of 1000 in the low energy part is obtained.

Summary and outlook

1. The 2+ doublet: after having analyzed 2% of the data it points to that we will determine the 16.9 MeV state within a 4% statistical error.

2. The 17.6 MeV state and the proton: the low energy part of the spectrum can be cleaned enough in order to detect a 10^6 event branching. This part of the experiment will take place in spring.

3. Further, as bonus the statistic will allow for an improvement on the half-life determination of the 8B. Present accepted value is (770 ± 3) ms [5].

References

For more details, send e-mail to: s.vinals@csic.es